YOUNG, HIGH-VELOCITY A STARS. I. ROTATIONAL VELOCITIES AND A CATALOG OF EARLY-TYPE STARS AT THE SOUTH GALACTIC POLE

CATHERINE M. LANCE

Mount Stromlo and Siding Spring Observatories, Australian National University Received 1987 June 29; accepted 1988 April 19

ABSTRACT

A number of high-velocity A stars at the South Galactic Pole (SGP), at distances of 1 to more than 4 kpc from the plane, were shown by Rodgers, Harding, and Sadler to be Population I stars, with calcium abundances of one-third solar to solar metallicity and a velocity dispersion perpendicular to the plane of 66 km s⁻¹. This combination of properties is unique among Galactic stellar populations.

To further explore theories of their origin, the stars were reobserved at higher resolution. The sample was augmented from a catalog, compiled from many sources, of all known early-type stars (305 to 15th magnitude) in 218 deg² at the SGP. Strömgren photometry, H δ line widths, radial velocities and calcium abundances are tabulated for about 200 of the early-type stars. Rotational velocities ($v \sin i$) for eight distant stars were obtained. Their $v \sin i$ values are typical of normal young A stars.

Subject headings: radial velocities — stars: abundances — stars: early-type — stars: high-velocity — stars: rotation

I. INTRODUCTION

a) Observations of A Stars

In 1971 Rodgers published a study of 54 A stars between 12th and 15th magnitude in the region of the South Galactic Pole (SGP). He found that 21 of these stars appeared to be of near-solar calcium composition, yet they were at distances of more than 1 kpc from the disk, with a radial velocity dispersion (perpendicular to the plane) of 66 km s⁻¹. This was quite unexpected, because stars observed at large distances from the disk were usually considered to be members of an old metalpoor population formed during the early stages of Galactic evolution (Eggen, Lynden-Bell, and Sandage 1962). Some previous studies had indicated the presence of a few apparently young A stars up to a kiloparsec from the plane, with an exponential scale height many times that of normal disk A stars (Sargent and Searle 1968; Perry 1969), but Eggen (1969) had suggested that these stars were actually old disk blue stragglers. Philip (1974) observed A stars with the Strömgren uvby system in part of the SGP area surveyed by Rodgers (1971) and found that the surface gravities of some of the stars, derived from the Strömgren c_1 index, were entirely normal for main-sequence (MS) A stars. (See also Relyea, Matlock, and Philip 1975).

Greenstein and Sargent (1974), in a study of 189 faint blue halo stars within 30° of the Galactic poles, found that 26% of the sample had the high rotational velocities of metal-line strengths typical of normal, young, MS B stars. This group had a radial velocity dispersion of 63 km s⁻¹ (for 45 stars, excluding several that they indicated might actually be Population II stars), similar to Rodgers's result of 66 km s⁻¹. Other workers have reported apparently MS OB stars far from the Galactic plane (Tobin and Kilkenny 1981; Tobin and Kaufmann 1984). Tobin (1986) and Keenan, Brown, and Lennon (1986) used high-dispersion and *IUE* spectra to show that the stars have Population I metal abundances and are indistinguishable from young disk stars.

Rodgers, Harding, and Sadler (1981, hereafter RHS) acquired flux-calibrated spectra and medium- and high-resolution spectra of some of the SGP A stars. Three of the later-type A stars were photometrically monitored to explore the possibility that metal-rich RR Lyrae stars had been included in the sample, but periodic light variations were not observed. Surface gravities and temperatures were derived from comparisons with Kurucz (1979) models and were found to be normal Population I values.

The distances of 19 Population I stars were found to range from 1 to over 4 kpc from the plane. The MS lifetimes listed by RHS were overestimated by a factor of 2 due to an error in the calibration, but even on that scale their ages are still not long enough for normal disk dispersive mechanisms to scatter the stars so far from the plane. Young A stars have a Wvelocity dispersion (perpendicular to the plane) of 9 km s⁻¹ and MS lifetimes of less than 1.2 Gyr, yet it would take at least a 5 Gyr period for their W dispersion to grow to even 21 km s⁻¹ (Mihalas and Binney 1981). This is still significantly smaller than Rodgers's W value of 66 km s⁻¹, which is similar to that found for thick disk stars (40 km s⁻¹) or halo stars (60–120 km s⁻¹).

The RHS calcium abundances are also unusual, ranging from one-third of the Population I metallicity to normal Population I values (-0.5-0.0 dex). Young A stars usually have abundances from -0.1-0.2 dex. The age-metallicity distribution for disk stars formed over the last 15 Gyr (Twarog 1980) shows that abundances as low as -0.5 are usually observed only in late-type disk dwarfs formed more than 9 Gyr ago. No Population I MS A star could possibly be that old. Although the kinematics of the A stars are similar to those of thick disk or halo stars, the lower than normal abundances of the A stars are still greater than those of thick disk stars (-0.9 to -0.3 dex) or halo stars (less than -0.9 dex). In sum, within the framework of the standard picture of galactic evolution, not one of the three descriptive parameters of age, abundance, or kinematics is consistent with any other. According to RHS, the velocities of the distant A stars are characteristic of the oldest stellar populations; their abundances are intermediate; yet they are young, possibly coeval, stars.

Stetson (1981a, b, 1983) found high-velocity A and F stars in the Solar neighborhood and concluded that the "evidence strongly favors the existence of main-sequence A stars with abnormally large space motions." His stars had a radial velocity dispersion of 57 km s⁻¹. Pier (1983) studied halo AB stars. Some of Rodgers's SGP A stars were included in his analysis. He found generally good agreement with Rodgers's abundances are gravities, but disagreed with some of the radial velocities (see § IIb for discussion of radial velocity results). Hartkopf and Yoss (1982) reported a kinematic and abundance survey of G and K giants at the Galactic poles. Out of 83 giants at distances of from 1 to 5 kpc from the plane, 26 were found to be metal rich, using a criterion equivalent to RHS's abundance range of -0.5-0.0 dex. Hartkopf and Yoss suggested that their metal-rich giants may be recent descendants of the high-velocity A stars.

Note that although primarily A stars are discussed in this work, this does not imply that *only* A stars are involved— Stetson (1981*a*) found high-velocity F as well as A stars (although some low-abundance, high-velocity F stars may be explicable as simply old or thick disk stars). However, the usual result of a star-forming event is a range of stellar masses. MS stars of lower mass than A stars presumably also exist at large distances from the plane, but are simply too faint to have been observed in the above studies.

b) Possible Origins of the A Stars

There have been several hypotheses proposed to account for the distant A stars. Generally they fall into three categories:

1. They are misidentified evolved or abnormal stars, such as blue horizontal-branch (HB) stars or blue stragglers.

2. They are randomly accelerated young disk stars, the result of normal energetic Galactic processes such as supernova bubbles, galactic fountains, cloudlet-cloudlet collisions in the halo, black hole encounters, supernova explosions in close binary systems, or ejections from young associations by binary interactions.

3. They are the results of an unusual and recent event: they were formed from a mixture of Galactic gas and lower abundance, high-velocity gas accreted during the merger of a small satellite galaxy with the Milky Way.

Hypotheses of the first type are possible because in the same spectral range as MS A stars also occur stars of quite different evolutionary histories, such as blue HB stars and blue stragglers. HB stars are often high-velocity stars, with greater luminosities and lower gravities (2.9-3.6 dex) than most MS A stars. At higher temperatures HB gravities increase until the HB overlaps the late B main sequence. For very early A stars, the distinctive abundance indicator of the Ca II K line at 3933 Å falls to a fraction of an angstrom in

equivalent width, so for some early (intermediate gravity) A spectra it may be difficult to distinguish between young and evolved stars. Figure 1 is a plot in the gravity-temperature plane of the HB and MS loci and some representative evolutionary mass tracks. HB stars rotate at very low velocities, usually less than 30 km s⁻¹. The mean $v \sin i$ for a sample of 33 blue HB stars from five globular clusters is only 13 km s⁻¹ (Peterson 1985).

Blue HB stars usually show abundances ≤ -1.0 , but among redder stars in the HB instability strip (from b - y around 0.15-0.30) are found old disk RR Lyrae stars of type c. They are thought to be post-red-giant-branch descendants of relatively metal-rich old disk stars. Theoretically, a very restricted mass range of these stars could evolve to the HB blueward of the instability strip (Taam, Kraft, and Suntzeff 1976), where normally only metal-poor stars would be seen. Blue HB analogs of the metal-rich RR Lyraes might explain the A star abundances, but a companion population of metal-rich RR Lyraes would then be expected to occur in the same field, and RHS showed that there are no photometric variables among the later-type metal-rich A stars at the SGP. Another difficulty with this suggestion is that even if all the high-velocity A stars were to be derived from such a population, they would still only have a radial velocity dispersion appropriate to the old disk, which is less than half of the A star dispersion of over 60 km s⁻¹.

To segregate members of a group of A stars into MS and HB stars is not a trivial operation. Statistically, given a large sample of A stars, the majority of lower gravity stars will be HB, and higher gravity ones will be MS. However, the luminosity of a star on the HB is very sensitive to variations in helium abundance and core mass (Sweigart and Gross 1976), so the HB for field stars may be broad, and low-coremass stars may appear in the intermediate gravity range. More importantly, it must be recognized that the normal evolutionary path of a young A star between the MS and the base of the red giant branch (RGB) passes through the gravity-temperature range occupied by the HB (Fig. 1). For early A stars, around 10% of this total dwarf-to-subgiant evolutionary stage can occur at gravities as low as 3.4-3.8 dex (Iben 1967). For this reason, studies that utilize photometric gravity indices alone (e.g., Philip 1974) as their MS/HB criteria will lead to misclassifications for specific stars. For accuracy it is essential that an additional criterion, like abundance, be utilized. Such an indicator is the Ca II K line equivalent width W(K), which correlates well with overall metallicity, except in the case of Am stars. These show low calcium abundances typical of stars several spectral types earlier than that indicated by their other metal lines, but they are easily recognized from m_1 indices, gravities, and spectral appearance.

The other group of A stars, the blue stragglers, are observed near the upper MS of galactic (and some globular) clusters and "straggle" relative to the other cluster stars (presumed coeval), which have evolved to the red giant branch. Blue stragglers appear to have extended main-sequence lifetimes, perhaps from mass transfer from a companion or from some mixing mechanism that could supply hydrogen for a longer period of core burning. Longer MS lifetimes mean that

FIG. 1.—Log gravity against Θ_{eff} (5040/effective temperature) for A stars. The main sequence (Allen 1973) is shown for the ZAMS and class V. The extent of the horizontal branch is from Greenstein and Sargent (1974) and Newell, Rodgers, and Searle (1969). Three evolutionary mass tracks are shown, for 2.6, 2.0, and 1.6 solar masses (Green, Demarque, and King 1987). The b - y colours for gravity of 4.0 dex, along top axis, are from Kurucz (1979).

blue stragglers may gain a larger W velocity dispersion from disk dispersive mechanisms (Wielen 1977). Any blue stragglers that might occur in the field would appear to be normal young A stars. Compared to the SGP A stars, blue stragglers from the old disk have a similar range of metallicities, but their W velocity dispersion (20–30 km s⁻¹) is significantly lower. Thick disk blue stragglers have similar kinematics to the A stars, but their abundances are lower. However, these restraints might disappear if either or both of the RHS abundances or kinematics were to be in error.

There is some evidence that blue stragglers may rotate at lower velocities than normal stars of the same spectral type. Main-sequence A stars have a large range of rotational velocities, generally between 50 and 250 km s⁻¹. To examine the distribution of $v \sin i$ with spectral class, all the values of A stars with luminosity class V, Am, or Ap classifications from the Uesugi and Fukuda (1970) $v \sin i$ catalog were tabulated (904 stars).

Slettebak *et al.* (1975), in a major calibration of standard stars for $v \sin i$ determinations, found that previous values had been measured at round 5% too high. García and Levato (1984) quantified the derivation of new $v \sin i$ from old measurements and found for A and F stars

$$v \sin i_{(\text{new})} = 0.92 \left[v \sin i_{(\text{old})} \right] - 2.0 \text{ km s}^{-1}.$$
 (1)

The Uesugi and Fukuda results were converted to the new system with equation (1). Table 1 shows the total number,

mean, and standard deviation of the $v \sin i$ values in each group. The relative percentage of stars, in bins of rotational velocity as a function of spectral type, is shown in Figure 2. It appears that most class V A stars rotate faster than 70 km s⁻¹, but that the majority of Am and Ap stars rotate at less than 70 km s⁻¹.

Mermilliod (1982) shows that most young clusters contain blue stragglers, of which over 60% in the spectral range B3 to A2 (Abt 1985) are magnetic (Bp and Ap) stars. Out of 13 blue stragglers, Abt finds rotational velocities of less than 50 km s^{-1} for all but one star. Among later A stars, the only available data is on blue stragglers in the open cluster M67. Peterson, Carney, and Latham (1984) find values of 120, 70, 65, and less than 10 km s⁻¹ for four mid-to-late A blue stragglers. Deutch (1966, 1968) also found values of 50-100 km s^{-1} for seven of the brightest M67 blue stragglers. Peterson, Carney, and Latham (1984) conclude that the M67 blue stragglers appear to be rotating more slowly than average. However, since the M67 values are not significantly different from the lower range of MS A stars for their spectral types (the star at 10 km s⁻¹ is an Am type), it cannot be concluded that slow rotation will be as distinctive a feature for blue stragglers in the later A spectral range as it is for the early A blue stragglers (Twarog 1987).

The suggestion that Ap characteristics may be common among blue stragglers may also not hold among later A types, because Twarog and Tyson (1985) indicate that, on the basis of photometric classifications, fewer than expected Am and

SUMMARY OF $v \sin i$	VALUES FRO	om the Uesugi and Fu	KUDA CATALOG
Spectral Type	n	$\langle v \sin i \rangle$ (km s ⁻¹)	$\sigma_{v \sin i}$ (km s ⁻¹)
A0V	128	129	74
A1V	92	116	72
A2V	134	115	62
A3V	94	111	50
A4V	41	131	45
A5V	50	115	48
A6V	13	131	51
A7V	69	110	43
A8V	9	120	31
A9V	10	83	41
Am	165	48	30
Ap	99	50	51

TABLE 1

Ap stars appear among the NGC 7789 blue stragglers. However, as they point out, photometric classification of A star peculiarities is not definitive, and spectral classification of these stars would be necessary to establish this finding.

Theories that fall in the first of the three categories listed at the beginning of this section demand that the parameters derived by RHS have been misinterpreted or are simply wrong. Measurements of $v \sin i$ for a sample of the SGP A stars may be useful to explore the proposition that they are a population of blue stragglers and will certainly indicate whether or not they are misidentified HB stars. Accurate surface gravities, radial velocities, and abundance measurements (Lance 1988, hereafter Paper II) will aid further examination of these possibilities.

Hypotheses in the second category suggest that the A stars are the consequences of rare, but continuous, mechanisms operating on disk A stars. All of these theories may be tested by two requirements: that the stars be formed randomly over time and that they be composed of normally enriched disk matter. Further discussion of these theories, and the data necessary to examine them, is reported in Paper II.

The hypothesis in the third category was proposed by RHS, who suggested that the A stars were recently formed from a mixture of Galactic gas and high-velocity gas accreted from a satellite galaxy merging with the Milky Way. Again, this theory is examined in Paper II. Table 2 summarizes the parameters of the A stars from RHS, and the predicted values from other hypotheses.

The remainder of § I describes the compilation of a catalog of all the known early-type stars to spectral type F0, to 15th magnitude, over a large area at the SGP. Selection effects that may have influenced the conclusions of previous studies have been discussed. In § II, spectral and photometric observations for many of the catalog stars are described. Rotational velocity measurements have also been obtained for some stars. Section III describes the results of the rotational velocity data.

c) The SGP Catalog

The list of previously uncataloged blue stars at the SGP (list II of Philip and Sanduleak (1968, hereafter PS) was the basis of the A star observations by Rodgers (1971).

FIG. 2.- The relative percentages of A stars (class V, Am, and Ap), in bins of rotational velocity, from the Uesugi and Fukuda (1970) catalog.

1988ApJS...68..4631

1988ApJS...68..463L

	Observed and	PREDICTED PRO	perties of Higi	H-VELOCITY A STA	RS	
	RHS (Observed)	Disk (Any Accelerating Source)	Old Disk Blue Stragglers	Thick Disk Blue Stragglers	Metal-rich RR Lyrae- Type Stars	Horizontal Branch
Mean						
gravity (dex)	-4.1	4.1	3.6-4.1	3.6-4.1	< 3.6	< 3.6
Age distribution	Coeval	Stochastic	Stochastic	Stochastic	Stochastic	Stochastic
Age (yr)	$\leq 10^{9}$	$\leq 10^{9}$			• • •	$\sim 10^{10}$
Abundance (dex)	-0.5 - 0.0	-0.1-0.2	-0.5 - 0.0	-0.9 to -0.3	-0.5 - 0.0	≤ -1.0
W dispersion (km s ^{-1})	66		20-30	40	20-30	60-120
Mean $v \sin i$ (km s ⁻¹)		~120	~ 80	~ 80	< 30	< 30
Scale height (pc)	700		350	1000	350	2000-3000
Status	Population I	Population I	Evolved	Intermediate	Evolved	Population I
	•	•	Population I		Population I	•

FIG. 3.- The sources of stars in the SGP blue star catalog: PS, Philip and Sanduleak (1968); SB, additional stars found by Slettebak and Brundage (1971) in the same area; CoD, Cordoba Durchmusterung, mainly late A and FO stars; SP, Philip and Stock (1972), additional stars in one-third of the area, not found by either PS or SB; Ch, Chavira (1958); Phot, Photometric studies, mostly late A and F0, from Bok and Basinski (1964), Eriksson (1978), and Ratnatunga (1983); other, Pier (1983), Drilling (1977), CSI list (Ochsenbein, Bischoff, and Egret 1981).

It is, however, incomplete at all magnitudes. Slettebak and Brundage (1971, hereafter SB) surveyed objective prism plates around the SGP to spectral type F0 (with a limiting magnitude of about 14.5) and found many stars that were overlooked in the PS survey. PS stated that they had searched for spectral types to A7, but in a comparison with other classifi-

cations, SB showed that PS had in fact systematically classified F0 stars as A7, so spectral-type limits were actually the same for both studies. In the area covered by both surveys, from 6th to 14th magnitude, PS overlooked 25% of all the stars that were identified by SB and 32% of the total number of stars that have now been collected from several sources. SB

TABLE 2

missed 8% of the stars listed by PS and 15% of the total (Fig. 3).

The area of 218 deg² at the SGP, covered by both PS and SB, was used as the basis of a blue-star catalog. It runs from $0^{h}16^{m}$ to $1^{h}22^{m}$ in right ascension and from -20° to -35° in declination (1950 coordinates). The total number of stars presently in the catalog is 305, to 15th visual magnitude and to B - V of 0.35. Stars were collated from the lists of PS, SB, Chavira (1958), and Philip and Stock (1972, hereafter SP), who surveyed a 5° wide strip centered on the SGP, which covered one-third of the catalog area. SP found a further nine stars in the strip that were not found by either PS or SB, suggesting that up to 18 more stars might exist to the SB limit of 14.5 mag over the whole area. The SGP catalog should be complete from the brightest nearby early-type stars to almost 14th magnitude stars in the central (SP) strip and about 90% complete to that limit outside the strip. Between 14th and 15th magnitude the catalog is probably only around 75% complete. A few other faint stars were found from photometric sources, principally Bok and Basinski (1964), Eriksson (1978), and Ratnatunga (1983).

More metal-rich A stars are likely to be present at the SGP than have so far been observed, not only because PS's list II is incomplete, but because PS's list I, of stars with BD and CD numbers, actually contains stars of 12th and even 13th magnitude from the CD survey. It became clear during the course of this work that it would not be presently possible to carry out observations on all the stars in the catalog, so an area within it of 100 deg² near SA 141 was selected for intensive study,

-21

-23

-25

-27

-29

-31

-33

Declination

hereafter termed the "box." The box had been covered not only by the three objective prism surveys mentioned above, but many of its stars had also been photometrically observed, so it was very nearly complete to 14th magnitude and to spectral type F0. Its coordinates are from $0^{h}36^{m}$ to $1^{h}22^{m}$ in right ascension and from $-23^{\circ}40'$ to $-33^{\circ}40'$ in declination (Fig. 4).

Table 5 (below) lists all the stars in the catalog, their varied nomenclature, 1950 coordinates, spectral types from other sources (some very approximate), their apparent visual magnitudes and any broad-band (UBV) photometry from the literature. Some of the coordinates are less accurate than others. This reflects their source. Most of these fainter stars have finding charts in PS, SB, and Chavira (1958).

d) Selection Effects

In previous studies of the A stars, some fairly serious selection effects have arisen, as a result of absolute magnitude differences; selection effects between early and late-type A stars, and between MS stars and stars of higher luminosity, both Population I and II. The absolute visual magnitude range for MS A0 to F0 stars is from +0.7 to +2.9. (Straižys and Kuriliene 1981). The maximum distance that an F0V star can be seen at 14th magnitude is only 1660 pc. It is possible to observe mid A stars to around 2000 pc, while only stars earlier than A3V can be seen to 3000 pc. An A0V can be observed to about 4500 pc. Hence, the A star sample contains relatively more late A stars to about 1500 pc and relatively more early A stars at greater distances.

box

‡ Ra

a†rea

ΡS

SB

SG

Εr

BB

Ρh

1988ApJS...68..4631

A consequence of this is that the most distant observed A stars are the bright early-type ones, which are those that are most vulnerable to errors in MS/HB classification. This results both from the proximity of the HB to spectral type A0, and from possible overestimation of the size of the Ca II K line in very early A stars due to the presence of interstellar calcium along the line of sight. This latter possibility is not a serious problem for the SGP A stars, because the effect is very small at high latitudes. Pier (1983) measured the equivalent widths of interstellar calcium lines, and from his data for stars in the SGP area, the mean amount (when large enough to be apparent) was only 0.17 Å [compared to normal A star W(K) values between 0.40 and 5.50 Å].

However, because the earliest A stars are those that are at the greatest distances and also those that are most open to disagreement about their evolutionary status, a spurious argument has arisen (Pier 1983) that since *reliably* MS stars (mid-to-late A) are seen only to 2 or 3 kpc, then they simply do not exist beyond 3 kpc. In fact, this apparent cutoff is no more than a simple consequence of the magnitude limit for A stars observed to the present—only stars earlier than A3V will be seen beyond 3 kpc at 14th magnitude. Compared to the few disputed distant earlier-type stars, it is the larger number of MS mid-to-late A stars (at 1–3 kpc from the plane) that are actually of greater kinematic significance because their high velocity dispersion clearly shows that some of these stars are capable of traveling further than 3 kpc from the Galactic plane.

A second selection effect is that previous estimates of the A star scale height may be inconsistent with the observed velocity dispersion. The theoretical relationship of scale height to velocity dispersion is model dependent. For stars in the solar neighborhood, each *UVW* component of velocity for a single generation of stars may be well described by a Gaussian distribution, while overlapping populations of different ages and spectral types may be described by a series of Gaussians forming velocity distributions that have higher peaks and larger wings than a Gaussian of the same dispersion (Wielen and Fuchs 1982).

However, at distances greater than around 1 kpc from the plane, the run of density for a specific stellar population has been observed to fall off approximately exponentially or as a sech² distribution (van der Kruit and Searle 1981; Norris 1987). The direct extrapolation of these models to the plane may lead to an overestimation of the disk stellar density, but at large Z the models are a most useful approximation. The scale height for a specific population may be derived by plotting the log of the density of stars (at particular Z heights) against the run of Z. For an exponential distribution, the points will fall on a straight line. Thus, if the density at a particular Z height is

$$D_z = D_0 e^{-Z/\beta},\tag{2}$$

where D_0 is the density at the plane, then the exponential scale height β may be found from

$$\beta = \frac{Z}{2.3(\log_{10} D_0 - \log_{10} D_z)}.$$
 (3)

However, the scale height derived in this way from the magnitude-limited A star sample will be an underestimate, because too few stars in distant bins have been included, relative to nearby stars, and a line through the plotted points will have too steep a slope.

The velocity dispersion for a minority group of stars with negligible mass relative to the disk, for distances greater than about 1 kpc from the plane, may be estimated from Poisson's equation and the equation of hydrostatic equilibrium, so that

$$\sigma_m^2 = 4\pi G D_0 \beta_D \beta_m, \qquad (4)$$

where G is the gravitational constant, D_0 is the disk mass density at the plane, β_D is the disk exponential scale height, and β_m is the exponential scale height of the minority population. Setting $\beta_D = 350$ pc, this simplifies to

$$\sigma_m^2 = 2.46\beta_m,\tag{5}$$

where σ is in km s⁻¹ and β_m is in parsecs. (For $\beta_D = 300$ pc, the factor is 2.11.)

RHS found an exponential scale height of 700 pc, which would indicate a velocity dispersion of about 38-41 km s⁻¹, based on the above discussion. This is somewhat inconsistent with their measure velocity dispersion of 66 km s⁻¹, which would indicate instead a scale height of around 1800 pc. Since this apparent discrepancy may be a result of model assumptions, it may be more useful to compare in situ observations. The only stars with kinematic and density data similar to the SGP stars, responding to the same Galactic potential at the same Z, are those of the thick disk. Freeman (1987) discusses results for several groups of thick disk stars and finds that their measured exponential scale height of 950 pc is consistent with both an observed and theoretically derived W velocity dispersion of around 40 km s⁻¹. Hence it would appear that the SGP A star scale height of 700 pc is low relative to that expected from stars with 66 km s⁻¹ dispersion. The effect discussed above of incomplete sampling may explain the lower scale height found by RHS. Alternatively, if the A stars are young and not well mixed, their velocity dispersion and density distribution may not follow a simple exponential model.

A further selection effect is that the proportion of HB stars relative to MS stars has been overestimated. For instance, Philip (1974) discusses the relative numbers of both types of stars at the SGP and the North Galactic Pole (NGP) without taking into consideration that the HB stars will be drawn from a larger volume than the intrinsically less luminous MS stars.

All of these difficulties suggest that it would be most useful to acquire a distance-limited sample of early-type stars. Due to the incompleteness of the surveys previously discussed, many A stars at the SGP have never been observed. To derive accurate gravities and temperatures, both Strömgren *uvby* photometry and spectral indices are needed. Further photometry was obtained for a large proportion of the stars without previous data from 9th to 14th magnitude in the box. Spectra were obtained for all but two of the stars between the same limits, apart from some such as sdO, sdB, white dwarf, and sdF stars, whose classifications were straightforward from uvby photometry. In addition, many of the RHS A stars outside the box were reobserved at medium resolution, while high-resolution spectra were obtained for eight of the stars to measure their $v \sin i$ values.

II. OBSERVATIONS

a) Photometry

The Strömgren c_1 index is most useful as a surface gravity indicator for all A stars, and the y band magnitude is almost identical to V in broad-band photometry. Major calibrations of the *uvby* system were reported by Strömgren (1966) and Crawford (1975, 1977, 1979). Philip, Miller, and Relyea (1976) describe methods of analysis of the indices.

Observations were obtained for 25 SGP stars using the two channel chopper (TCC) on the 40 inch (1.0 m) telescope at Siding Spring. The TCC simultaneously uses two gallium arsenide detectors and two sets of filters. (One set was kindly supplied by R. Shobbrook, and both sets had been manufactured in the same batch.) Standard stars from the list of Grønbech and Olsen (1976) were observed throughout each night. Acquisition and reduction programs used were written by M. S. Bessell and S. Russell. Results from both detectors were found to be consistent.

Recently, data from Philip (1986) became available for 12 of the observed stars (very kindly supplied prior to publication). The differences between measurements, in the sense of this data minus Philip's data are $\Delta V = -0.014 \pm 0.054$, $\Delta(b-y) = 0.008 \pm 0.011$, $\Delta m_1 = -0.015 \pm 0.025$, and $\Delta c_1 =$ -0.001 ± 0.047 . Due to weather problems it was only possible to do one series of observations per star on the 40 inch telescope, so Philip's values were used where possible, as they were from a large number of observations. The accuracy of the indices for subsequent derivations (Paper II) needs to be high, but not perfect, so no attempt was made to transform results from different studies to a common system. The few overlapping observations were in good agreement. The V magnitudes are listed in Table 5, and the b - y, m_1 and c_1 indices in Table 6, both in the Appendix, together with results from other sources.

b) Medium-Resolution Spectra

These were obtained on the Mount Stromlo 74 inch (1.9 m) telescope. One series of observations was at coudé focus, with a reciprocal dispersion of 40 Å mm⁻¹ and 1.2 Å resolution. The spectral range covered from 3820 to 4170 Å. The detector was the Mount Stromlo two-dimensional blue photon counting array (BPCA), an intensified CCD of great sensitivity at blue wavelengths. An iron-argon lamp was observed before and after each exposure. The other series of observations was also done on the Mount Stromlo 74 inch telescope with the BPCA detector at Cassegrain focus, with 1.4 Å resolution. Arc spectra were cross-correlated to check if any channel shift had occurred while the spectra were being recorded. Any shift was usually negligible for coudé spectra and equivalent to less than 4 km s⁻¹ for Cassegrain spectra. The spectra were reduced with Mount Stromlo software to wavelength and log wavelength (linear velocity) scales.

i) Radial Velocities

Several radial velocity standard template stars had been acquired separately for each observing run and were cross-correlated with program stars to derive the radial velocity shifts, using programs by G. Wilson and D. Carter. While the cross-correlation method is successful for late-type stars with distinctive metal lines, it has difficulties with A stars at the resolution obtained (1.2 Å). This is because measurable metal lines are almost absent in early A stars and are weak in later ones. A further complication is that the strong hydrogen lines give very broad cross-correlation peaks, of 20–30 km s⁻¹, which also lead to random inaccuracies. A range of Fourier wavenumber filters were experimented with (cross-correlating templates of known radial velocity against each other), but it was not possible to increase accuracy to better than 10–15 km s⁻¹ by this method.

An alternative technique was simply to measure the wavelength shifts of plots of the (medium-resolution) Ca II K lines by hand, corrected for heliocentric velocities, for around 30 solar neighborhood A stars. By comparison with Ca II K line shifts from high-resolution spectra of the same stars, it was possible to check the accuracy of the former. It was found that neither of the two techniques (cross-correlation or hand measurement) used separately was as accurate as the mean of both methods. The residuals of the mean values relative to the high-resolution measurements had a dispersion of 8 km s⁻¹. A plot of radial velocity values of all stars in common with either Pier (1983) or Rodgers (1971) is shown in Figure 5. Eight Population I stars common to both those studies and this one are listed in Table 3 together with the means and velocity dispersions. Note that while there is disagreement between individual values, the dispersion is almost identical from three studies, which suggests that the dispersion for the more complete sample (Paper II) is well defined. The radial velocities from these spectra and from any other available sources are listed in Table 6 in the Appendix.

ii) Hydrogen Line Widths

The equivalent widths of the Balmer series of hydrogen lines in A stars are a function of temperature for the whole A star range, and are also particularly sensitive to surface gravity effects for the early and mid A star spectral types. The Balmer jump, a measurement of the difference between the continuum opacity above and below the Balmer limit at 3650 Å, is also gravity sensitive for almost all A stars, becoming larger for lower gravities. When Balmer line width and the Balmer jump (measured by c_1) are calibrated with stellar atmospheric models, they can be most useful indicators of gravity and temperature for A stars (see Paper II for technique).

The linear width (in angstroms) of a Balmer line at a specific proportion of the continuum height is used as an estimate of the equivalent width, which is difficult to measure. The line widths are measured at either 80% or 70% of the height of the continuum, termed D(0.80) or D(0.2) and D(0.70), respectively. D(0.80) falls where the wings of the hydrogen lines broaden rapidly in MS stars, and is more sensitive to the effects of uncertainties in the continuum level. At D(0.70), the slopes of the wings are at about 45°, and it is

FIG. 5.—Radial velocities (this paper) against those found by Pier (*diamonds*) and Rodgers (*triangles*). Values for the same stars are joined by lines. Note that three of Rodgers's values are highly discrepant, presumably due to errors from lower resolution spectra. Otherwise, of 10 stars (either Population I or II) common to all three studies, this study finds better agreement with five of Rodgers' values than with Pier's; and, for the other five, the reverse holds (although Pier's results have clearly less scatter than those of Rodgers).

 TABLE 3

 Radial Velocities of Population I Stars Common to Three Studies

Number	Star	Rodgers (1971) (km s ⁻¹)	Pier (1983) (km s ⁻¹)	Lance (1988) (km s ⁻¹)
36	PS 4II	- 34	- 94	- 55
46	PS 7II	-31	-23	-12
53	PS 1011	105	76	109
88	PS 2011	45	15	57
128	PS 3011	25	65	44
150	PS 32II	-60	-50	-46
161	PS 3711	- 35	0	-22
164	PS 3911	- 33	-15	-15
Mean		-2.3	- 3.3	7.5
σ _W		55.6	56.4	56.8

consequently a more accurate index. [D(0.80) can be derived from D(0.70) via Kurucz (1979) models if the gravity and temperature are known.] D(0.70) values for H δ were measured for the digitized spectra. Errors from extremes of continuum level estimates are no more than ± 1.5 Å. These results, and a few from other sources, are listed in Table 6 in the Appendix.

iii) Calcium K Lines

The equivalent widths of the Ca II K line at 3933.7 Å were measured with an interactive program which fits and plots a Gaussian to the line. The accuracy of this method was checked by comparison with values obtained from a planimeter, which were found to be in good agreement. Lines were measured three times over a period of several months to minimize random errors in judgment of the continuum level. The scatter between different measurements for the same line was small, usually around 8% of the total equivalent width. The results, with a few from other sources, are listed in Table 6 in the Appendix.

c) High-Resolution Spectra and Rotational Velocities

Five of the SGP A stars which RHS classified as Population I, and three $v \sin i$ templates, were observed on the 3.9 m Anglo-Australian Telescope (AAT) at Siding Spring, with 11 Å mm⁻¹ at the image photon counting system detector, equivalent to 0.30 Å resolution. The spectra were reduced as described for medium-resolution spectra. It is relatively easy to measure $v \sin i$ values of less than about 140 km s⁻¹ by hand, from the FWHM of lines in a digitized spectrum, and with a calibration such as in Gray (1976, p. 401) simply read off a mean $v \sin i$. (Note that Gray's ordinate is ambiguously entitled "half width," but the original data from which the graph was drawn used FWHI [Slettebak *et al.* 1975].) In practice, it becomes very difficult to measure $v \sin i$ from plots of A stars whose lines have been broadened by more than about 140 km s⁻¹, so an automated Fourier technique then becomes useful.

Programs written by D. Carter were used to obtain the rotational velocities, utilizing the technique described by Sargent *et al.* (1977, hereafter SSBS). This method normally finds the velocity dispersions of galaxies by minimizing the difference between the Fourier-transformed spectrum of a broadened template and a program galaxy. The broadening function used is Gaussian. A stellar line profile is the convolution of a flux profile of a nonrotating star with a "rotation profile," *elliptical* in form (Gray 1976), which was systematically underestimated by the fitted SSBS Gaussian. To correct for this underestimation, a calibration curve (Fig. 6) was derived from the SSBS velocities set against $v \sin i$ values measured by hand with Gray's calibration, for a large number of solar neighborhood A star high-resolution spectra.

The program star SSBS results (the mean of the rotational velocities relative to three template stars) were read into Figure 6 to find the actual value of $v \sin i$. Since the minimum that could be found by the templates (due to their own $v \sin i$ broadening) was 38 km s⁻¹, the narrow lines of stars below that value were simply measured by hand, again using Gray's calibration. Three other SGP A stars were observed at coudé focus on the Mount Stromlo 74 inch (1.9 m) telescope, with a reciprocal dispersion of 11.4 Å mm⁻¹, and resolution almost identical to that obtained from the AAT. The AAT template stars were used for these spectra as well, because for two of the program stars with narrow lines, rotational veloci-

FIG. 6.—The calibration curve used for derivation of $v \sin i$ values from SSBS output.

ties found from hand measurement agreed very well with the calibrated SSBS output.

Seven of the nearby A stars with $v \sin i$ results were also studied by Stetson (1983). Figure 7 shows a comparison between our respective $v \sin i$ measurements. It can be seen that the agreement is very good, apart from the star with the highest rotation velocity, for which Stetson measured a value 30 km s⁻¹ greater than that found here. This is probably because the calibration curve (Fig. 6) was extrapolated as conservatively as possible, leading to a slight underestimation of the highest rotational velocities. There is clearly no indication that the $v \sin i$ values derived from this technique have been overestimated in any way for the SGP stars.

III. RESULTS

Table 4 shows the name, the approximate spectral type (from the color), the mean and dispersion of the SSBS output, the rotational velocities from spectral plots, and the final calibrated $v \sin i$ values for the AAT and 74 inch program stars and details of the template stars. Five out of the eight stars, with values of 131, 188, 111, 172, and 123 km s⁻¹, have rotational velocities which are clearly too high for HB stars, but which are typical of young MS A stars (see Fig. 2).

Three others have lower rotational velocities. They appear to be normal Am or Ap stars, although these classifications cannot be definitive, as they are usually derived from objective prism spectra. PS 2II (48 km s⁻¹) shows the strong Sr II line at 4077 Å indicative of an Ap star in the mid A range (Morgan, Keenan, and Kellman 1942). The equivalent width of the line at 4077 Å was 0.33 Å, while that of the template Ap star (HR 8949) was 0.36 Å. In comparison, PS 30II (a normal A star of around one spectral class later than PS 2II, so it would be expected to actually have stronger metal lines) had an equivalent width at 4077 Å of only 0.14 Å.

PS 29II ($v \sin i$ of 36 km s⁻¹) is almost certainly an Am star, as its spectrum is very similar to that of the template star HR 178 (A7m). To quantify this, the mean equivalent width of the iron triplet lines at 4045, 4063, and 4071 Å was calculated. The template has a mean equivalent width of 0.52 Å; that of PS 29II is 0.42 Å, in comparison to PS 62II (slightly later type than PS 29II) which is only 0.13 Å. PS 29II had an m_1 index of 0.193. Am stars are often indicated by m_1 indices greater than 0.200, but the normal range for Am stars at PS 29II's b - y of 0.139 is from 0.170 to 0.240 (Kilkenny and Hill 1975), so its m_1 index is not inconsistent with an Am classification.

The spectrum of PS 57II ($v \sin i$ 30 km s⁻¹) also shows enhanced metal lines and appears to be a marginal Am star. Its iron triplet mean equivalent width is 0.29 Å, while that of PS 37II, a normal A star of around the same temperature, is only 0.15 Å.

IV. DISCUSSION

Around 25% of MS A stars are Am, and about 10% are Ap stars (Wolff 1983). To find one Ap and two Am stars out of eight MS stars is very nearly the expected proportion. Their

FIG. 7.—The derived $v \sin i$ values for seven stars measured both by the technique described in this paper and by Stetson (1983).

			$\langle n \sin i \rangle$		n sin i	<i>n</i> sin <i>i</i>
Number ^a	Star	Spectral Type ^b	SSBS ^c	Dispersion	(Plots) ^d	(Adopted) ^e
12	PS 2II	A3Vp	44	5	47	47
161	PS 3711	A4/5V	85	8	124	123
265	PS 57II	A5Vm:	38	7	30	30
18	PS 3II	A9V	92	10	129	131
49	PS 8II	A7V	138	7		188
125	PS 29II	A8Vm	42	3	36	36
128	PS 30II	A4V	76	7	111	111
287	PS 62II	A8V	125	16		172
Template	HR 8949	A2Vp			23	23
Template	HR 7990	A3m			44	44
Template	HR 178	A7m			38	38

 TABLE 4

 SCCP PROCRAM STARS AND 11 Sin i TENTHATES

^a First three stars are 74 inch observations; all others are from AAT.

^bSpectral types for program stars only are estimates from color and spectra.

°Rotational velocities from SSBS output.

^dRotational velocities from spectral plots.

^e The adopted calibrated values of $v \sin i$.

presence in the sample complicates comparison between blue stragglers and the SGP stars, as it is not yet clear (see § Ib) whether any relationship between spectral peculiarity and blue straggler formation exists over the whole temperature range for A stars. If only the nonpeculiar A stars are consid-

ered, Abt (1985) shows that many of the non-Ap hotter blue stragglers are also slowly rotating stars, while of Peterson, Carney, and Latham's (1984) few later A blue stragglers (apart from the Am star), one has an average rotation for its spectral type, and two are less than the mean. Excluding

1988ApJS...68..463L

No ^a	SB⁵	PS¢	ID ^d	CD, others ^e	\mathbf{B}^{f}	R.A. (1950)	Dec. (1950)	Spectral type ^g	$m_V{}^h$	B-V	U-B	Si
1	122			CD -31 99		0 16 04	-30 53 48	A 0	12.75	0.14	0.18	Р
2	123					0 16 12	-20 42 00	A 0	12.9			
3	124		1492			0 16 24	-33 36 00	A5	8.82			
4			CH148			0 16 24	-32 12 00	В	14.47	-0.17	-1.07	BI
5	125		CH149	CD -25 92		01642	-25 29 00	Α	12.72	-0.01	0.13	AT
6	126		CH150	CS22882-03		0 16 45.4	-30 18 27	A 0	14.53	0.01	0.08	Р
7	101		SP222	DD 44 44		0 17 02.4	-27 42 04	A0	13.5			
ð	131	111		BD -22 46		0 17 24	-22 03 00	FU	10.6	0.04	0.10	ъ
10	133	11	1610	CD _25.00		0 17 46.9	-29 04 14	A0	14.40	0.04	0.10	r RW
11	134	21	1019	CD -25 99		0 17 48.0	-24 08 47	A0 A7	0.04	0.55	0.14	D 11
12	136	211		00 -20 101		0 18 04 9	-20 25 00	A3	12 27	0 15	0 15	EG
13	100		1667	CD -24 104		0 18 17.2	-23 54 26	FO	6.77	0.10	0.10	24
14	137	3I		CD -34 99		0 18 18	-34 07 00	FO	11.9			
15	143			GD603		0 18 42	-33 58 00	Α	14.62			
16			SP224			0 18 59.9	-26 42 53	DA	13.8			
17			CH153			0 19 06	-22 51 00	Α	14.7			
18		311				01923	-32 59 12	A7	13.01	0.32	0. 12	$\mathbf{E}\mathbf{G}$
19	146	4 I		CD -23 112		01924	-22 57 00	A5	11.0			
20	147		CH154	GD605		0 19 30	-24 43 00	B	14.48	-0.33	-1.23	BI
21	149					0 19 48	-30 43 00	FO	13.0			
22	151	51 61	1960	CD -34 111		0 20 00	-33 55 00	A5	13.2			
23	152	61 71	1000	BD -21 41		0 20 24	-20 56 00	A/ DOIVMN	10.5	0.00	0.21	DW
24	192	11	CH155	CD -31 138		0 20 42.5	-31 10 40	A	0.00	0.00	-0.51	DW
26	161	81	2026	CD -29 106		0 21 30	-23 28 00		8 14	0.14	0.16	вw
27	162	9I	2020	CD -27 110		0 21 40.0	-27 11 37	ASIV	8 36	0.14	-0.02	BW
28	163	01	2080	00 21 110		0 22 24	-20 13 00	FO	8.82	0.20	0.02	2
29	167	10I	2178	BD -22 65		0 23 11.3	-21 54 29	A1Vn	7.63	0.06	0.05	BW
30	169			LB7736		0 23 30	-21 14 00	В	13.98			
31	171		CH157			0 23 48	-23 17 00	B6	14.60			
32	172	11I		CD -32 128		0 23 52	-32 13 54	A 0	12.40	-0.0 2	0.00	Р
33	173			GD61 2		0 23 52.8	-27 25 13	Α	14.47			
34		12I		CD -25 145		0 24 12	-25 17 00	A7	12.1			
35	178					0 25 00	-22 17 00	FO	13.18			D O
36	179	411	0005	DD 00.07		0 25 05.2	-32 01 26	A9	13.14	0.31	-0.02	EG
31	101	131	2395	BD -20 67		0 25 06.3	-20 24 39	A7IV DO (AOV	6.8U	0.22	0.13	BW
30 30	182	141	2410	CD -30 127		0 20 17.7	-49 41 21	69/AUV	11.15 19 9	0.05	-0.02	ВW
40	100	15I	2527	CD -25 155		0 20 12	-22 43 00	FOILIN	7 13	0.13		CS
41	191	511	CH158	OD -20 100		0 26 36	-23 56 00	AO	14 02	0.15	0 19	EG
42			SP229			0 26 37.5	-27 30 50	OB	13.2	0.00	0.110	
43			CH159			0 26 42	-30 39 00	A	14.4			
44	193	16I		CD -32 152		0 26 42	-32 08 00	A7	11.3			
45	19 2	6I I		CS22882-33		0 26 46	-31 42 18	Α	14.23	0.06	0.13	Р
4 6	194	7 11				0 26 47.8	-33 06 26	A 0	13.42	0.19	0.10	\mathbf{EG}
47	197	17I	2613	CD -23 173		0 27 05.3	-23 27 39	A2	10.28	0.32	0.0 2	BW
48	195			CD -35 150		0 27 00	-34 49 00	A3	13.3			
49	198	811				0 27 10.9	-21 00 12	A5	13.03	0. 22	0.09	EG
50	199	18I	2641	CD -30 138		0 27 28.7	-30 30 25	A0V	9.52	0.15	0.10	ВW
51			SP231			0 27 32.4	-28 03 49	Aw	11.3			
52	0.00	911		0000000 17		0 27 47.2	-29 31 10	F	12.22	0.41	-0.19	EG
53	202	1011	9602	CS22882-15		0 27 54.8	-28 25 32	AU	14.26	0.16	0.11	P
04 55	203	191	2096	CD -24 179		0 27 52.7	-24 03 50	A3/5V	5.18	0.13		CS
56 56	208	201 11 II		CD -32 100		0 20 10	-34 19 00	A1 A	14.3	0.06	0 90	FC
57	200	1211				0 28 48	-23 32 00	A0	14.51	0.00	0.40	FC

TABLE 5

474

	TABLE 5—Continued											
Noª	SB ⁶	PS°	ID ^d	CD, others ^e	Bł	R.A. (1950)	Dec. (1950)	Spectral type ^g	$m_V{}^h$	B-V	U-B	Si
58	21 0	13II		CS22882-14		0 28 53.9	-28 14 02	A 0	12.99	0.02	0.06	Р
59	211		CH162			02900	-24 14 00	Α	13.5			
60	212	14II		~~		0 29 00	-25 11 00	A 0	13.32	0.00	0.0 2	\mathbf{EG}
61	213	211	2846	CD -23 186		0 29 08.9	-23 13 19	A3	10.61			
62	214			GD 05 100		0 29 12	-24 35 00	A	13.4			
63	215		(Door	CD -25 182		0 29 24	-24 56 00	FO	12.3			
64			SP235	CD 24 190		0 29 50.2	-29 39 35	A5w Do	12.9			
60 66	991	1511	2980	CD -34 180		0 30 25.0	-34 20 44	F 2	8.94	0.19	0 19	FC
67	241	1011 991	3002	CD -34 181		0 30 34.3	-21 27 32	AU ASIV/V	13.99	0.12	0.13	EG
68	225	1611	3002	CS22882-18		0 30 50.2	-34 03 05	ASIV/V	9.57	0.24	0.10	БW Р
69	220	1011	CH163	GD619		0 31 25 0	-20 00 00	A0 A	14.20	0.10	0.14	1
70	230		011100	0.000		0 31 30	-21 01 00	AO	13.8			
71	231	17II		CS22882-19		0 31 36.2	-28 47 11	A0	13.18	-0.01	-0.03	Р
72	235	18II				0 32 51.8	-21 17 13	A0	12.6			-
73	236	23I	3244	CD -26 173		0 33 03.9	-25 40 27	A7III	8.20	0.28		CS
74	238	24I		CD -27 171		0 33 21.7	-26 46 17	FO	10.2			
75				CS22882-22		0 33 23	-30 16 42	AB	14.99	0.10	0.19	Р
76			33 00	CD -24 224		0 33 26.9	-24 04 35	A3	10.28			
77	242	25I	3326	CD -23 220		0 33 37.6	-23 06 58	A7p	6.05	0.30		CS
78			3338	CD -27 174		0 33 43.5	-27 02 07	FO	8.48			
79				CS22882-25		0 33 54	-31 12 30		14.91	0.03	0.12	Р
80				CD -26 179		0 33 59.0	-25 56 54	A7	9.8			
81	246	19II				0 34 06	-22 42 00	A 0	13.66	0.17	0.16	\mathbf{EG}
82		26I	3417	CD -34 206		0 34 21.1	-34 33 26	A8V	10.76			
83		27I		CD -28 170		0 34 36.7	-27 54 38	A7	12.1			
84	248		3436			0 34 24	-31 58 00	FO	9.81			
85	250	281	9550	CD -27 179		03454	-27 06 00	A3	13.0			
80 97	254	291	3559	CD -25 233		0 35 55.9	-24 56 15	A5 DeV	8.53	0.11	0 57	DW
01	200	2011	3990	DD -21 84	ſ	0 36 01.9	-20 34 16	B8V	6.74 14.01	-0.11	-0.57	БW D
80	250	2011 9111		0322002-20	ſ	0 36 12	-29 14 34	A0	19.01	0.14	0.10	F FC
09	209	2111			•	0 36 24	-24 43 00	A0 A5	12.90	0.00	0.23	ĽG
91	263	31 I	3622	CD -26 196	f	03624	-34 59 00	A5V	7 77	0 22		CS
92	265	321	0022	CD -23 239		0 36 30	-225500	FO	10.8	0.22		00
93	272	22II		02 10 100	f	0 38 14.9	-26 03 17	A5/7	13.04	0.25	0.07	EG
94	273	33I		CD -24 266	f	0 38 18	-24 23 00	В	12.69	0.20		
95	276	23II			ſ	0 38 40.3	-26 12 06	A 0	13.82	0.13	0.16	EG
96	277	34I	3885	BD -20 118		0 38 48.6	-20 08 13	A 0	9.79	-0.08	-0.24	BW
97	279	24II				0 38 54	-20 28 00	A7	12.05			
98	2 80					0 39 24	-21 14 00	A 0	14.0			
99	283	25II			f	0 39 42	-33 17 00	Α	14.54	0.08	0.21	EG
100	284	35I	3 999	CD -32 254	f	0 39 53.7	-32 11 25	A2V	9.32	0.13	0.09	BW
101	285	26II			f	0 39 57.8	-28 50 48	A3	13.62	0.18	0.12	EG
10 2	2 86	37I	4011	CD -34 245		0 39 57.2	-34 15 50	A 9 V	9.57	0.34	0.12	BW
103	287	36I		CD -29 201	f	0 40 03.5	-28 51 01	A2	11. 2 9	0.12	0.08	BW
104	288	38I	4 05 2	CD -32 257	ſ	0 40 14.4	-32 32 29	A5	10.59			
105	292					0 41 18	- 21 0 2 00	A 0	12.9			
106	294	39I	4158	BD -21 99		0 41 24.9	-20 40 22	A 9	9.56	0.27	0.0 2	BW
107	293	40I	4157	BD -21 100	,	0 41 27.4	-20 31 14	A2	9.59	0.0 2	-0.04	BW
108			SP249	CD -27 224	J	0 42 10.8	-26 35 24	A8	10.5			
109	298	2711	10/-	DD 45.55	J	0 42 14.3	-27 27 21	A2	12.97	0.07	0.16	EG
110		411	4247	BD -22 127	,	0 42 15.6	-22 16 39	F2V	5.23	0.33		\mathbf{CS}
111	299 200	421	4248	CD -24 297	,	0 42 19.7	-23 57 00	A3	10.35			
112	300		4259			U 42 24	-20 37 00	F.0	8.93			

463L						TA	BLE 5—Con	tinued					
pJS68	Noª	SB ^b	PS℃	ID ^d	CD, others ^e	Bł	R.A. (1950)	Dec. (1950)	Spectral type ^g	$m_V{}^h$	B-V	U-B	Si
88A	113	3 01				ſ	0 42 24	-24 58 00	A	13.5			
	114	3 02	28II			ſ	0 42 26.6	-29 30 42	AO	14.16	0.13	0.10	EG
	115	304	43I		CD -22 243		04254	-22 02 00	A 0	12.4			
	116	306	45I	4329	CD -29 213	f	0 43 05.2	-28 57 28	A 0	10.1 2	0.18	0.09	BW
	117	307	44I	4327	BD -21 106		0 43 08.3	-21 10 54	AOV	9.51	0.14	0.11	\mathbf{EG}
	118	310	461	4200	BD -22 130	f	0 43 18	-21 46 00	AO	11.9	0.00	0.00	DW
	119	312	471 781	4399	CD -29 215 CD -34 276	,	0 43 37.9	-29 05 59	A9V F0	9.64	0.28	0.03	ВW
	120	515	401		CS22942-04	f	04342	-33 50 00	FU	11.0	0 17	0.06	р
	121	314	4 9I	4414	CD -26 247	ſ	0 43 48.0	-25 48 36	FOV	9.05	0.29	0.00	РН
	123	315			E 29.2.002	ſ	0 43 49.8	-29 23 27	AO	13.63	0.26	0.01	E
	124	316	50I		CD -31 285	ſ	0 43 54	-31 24 00	FO	11.40			
	125	317	2 9II			f	04414.5	-28 12 38	A5	13.42	0.29	0.13	EG
	126	318	51I	4485	CD -34 280		04413.3	-33 41 32	AOIV	10. 52	0.09	0.01	BW
	127	32 0	52I	4507	CD -24 321	f	0 44 31.9	-24 29 20	A5	7.50			
	128	322	3 0II		CS22942-06	,	0 44 34.2	-23 37 16	A5	12 .90	0.18	0.08	Р
	129	323	501		CD -30 230	J	0 44 32.2	-30 27 14	FO	10.35	0.30	0.08	Е
	130	326	531	4699	CD -23 308	1	0 45 24	-22 46 00	FO	13.0		0.07	Б
	131	320	541	4023 1622	CD -30 240 BD 22 134	,	0 45 30.3	-29 37 00	FOIL	7.57	0.32	0.07	E
	132	330	31 II	4044	DD -22 134	f	045 29 7	-21 39 40	∆ A	19 00	-0.05	-0.12	EG
	134	332	0111		E 54	f	0 46 08	-27 27 06	A	14.81	0.40	0.12	E
	135	333		4691	- • •	f	0 46 15	-28 46 06	FO	6.76	0.35	-0.01	Ē
	136			4689	CD -23 311		04620.7	-23 20 20	A5	9.42			
	137	335	55I		CD -30 248	f	04635	-29 48 30	A7	10.69	0.33	0.07	РН
	138	337	56I		CD -28 251	f	04647.9	-27 48 05	A5	11.45	0.26	0.06	\mathbf{PH}
	139	338				f	0 47 00	-27 39 00	A3	13.42			
	140	340	571	4772	CD -24 347		0 47 05.7	-23 38 01	A2/3V	6.26	0.14	0.13	BW
	141	240	FOT		CS22942-09	1	04726	-23 29 30	10	14.76	0.29	-0.04	Р
	144	344 344	501 501		CD -31 306	f	04140	-31 10 00	A0 A2	14.45	0.18	0.00	рц
	143	343	551	4876	CD -28 260	f	0 48 10 2	-30 14 24	A GITI /IV	0 43	0.18	0.09	E
	145	345		1010	01 -10 200		0 48 12	-22 23 00	AO	13.9	0.00	0.00	D
	146				E30.1.036	f	0 48 22.6	-30 19 24	E	12.99	0.35		\mathbf{E}
	147				E30.1.041	f	04851	-30 17 36	Е	11.45	0.35		Е
	148			4974	CD -35 285		04902.2	-35 03 15	A5	9.48			
	149				E30.5.048	f	04913	-30 59 06	в	14.40	-0.30		Е
	150	350	32II		HL6772	f	0 49 22.0	-32 10 01	A 0	13.65	0.09	0.15	\mathbf{EG}
	151	351	611		CD -34 317	,	0 49 24	-34 27 00	A3	12.80			-
	152	959	621	5024	CD -31 319	, ,	0 49 29.4	-31 13 48	A9V	9.22	0.34	0.07	Е D
	153	303	2211		0522942-13	ł	0 50 13	-26 10 42	A	14.61	0.19	0.17	P
	154	355	3311		E 30 1 053	, f	05024	-30 10 52	AU	13.03	-0.06	-0.12	ъG F
	156	360	3411		GD659	f	0 50 52.0	-33 17 00	R	13.36	-0.22	-1 15	EG
	157	000	• • • •		E30.5.071	f	0 51 33	-30 58 18	E	14.12	0.32	-1.10	E
	158	361	63I		CD -29 259	ſ	0 51 41.4	-29 01 21		11.06	0.21	0.11	PH
	159	362	35II	HL685	CS22942-15	ſ	0 51 54.0	-27 11 54	A 0	13.08	0.07	0.16	Р
	160	363	36II			ſ	0 52 16.0	-28 30 10	A3	13.78	0.19	0.17	\mathbf{EG}
	161	366	3711		CS22942-20	f	0 53 09.8	-23 44 44	A5	12.30	0. 21	0.06	Р
	16 2	367	64I		CD -31 353	f	0 53 12	-31 32 00	A3	11.76			
	163	371	38II		-	ſ	0 53 32.7	-26 39 12	A3	13.59	0.34	0.04	DR
	164	373	39II		00 01 00-	J F	0 53 48	-33 13 00	A0	13.64	0.20	0.19	EG
	165	375	651	5496	CD -31 362	r F	0 53 58.3	-31 27 14	B9/A0V	10.58	-0.07	-0.19	BW
	100				EZ9.5.101		0 54 16	-29 56 24	A	14.96	0.18		E

 $\ensuremath{\textcircled{}^{\odot}}$ American Astronomical Society $\ \bullet$ Provided by the NASA Astrophysics Data System

.463L	
68.	-
988ApJS.	-
19882	

TABLE 5-Continued

Noª	SB ^b	PS¢	ID ^d	CD, others ^e	Bł	R.A. (1950)	Dec. (1950)	Spectral type ^g	$m_V{}^h$	B-V	U-B	Si
167	377	66I	5524	CD -26 303	f	0 54 22.7	-25 37 59	A5V	7.22	0.15	0.04	DR
168	379	67I	5546	CD -30 283	ſ	0 54 30.0	-30 01 51	A5IV/V	10.23	0.22	0.09	BW
169			CH179		f	0 54 36	- 27 38 00	A	14.8			
1 7 0			CH180			05442	-22 38 00	Α	14.2			
171				E30.0.073	f	$0\ 54\ 56.2$	-30 08 18	Α	14.72	0.08	0.13	E
172	384	68I		CD -31 372	f	0 55 06	-31 32 00	FO	12.6			
173	386		563 0		f	0 55 18	-26 30 00	FO	9.99			
174	387	7 0 I		CD -24 415	f	0 55 48	-23 47 00	A7	12.12			
175	388	69I		CD -24 414	f	05549	-24 10 12	A 0	12.35	-0.03	-0.09	Р
176	389			CS22942-26	ſ	0 55 57	-24 31 54	A 0	14.38	0.18	0.06	P
177	3 90	71I	5737	CD -30 297	1	0 56 11.9	-29 37 37	B7III	4.31	-0.18	-0.5 2	BW
178				E29.3.097	J	0 56 18	-29 35 54	A	14.35	0.17		E
179	391			CD -35 332	,	0 56 30	-34 45 00	A3	11.70	0.10	0.21	P
180	393	731	5769	CD -30 299	,	0 56 36.7	-29 40 17	A4V	9.31	0.19	0.07	DR
181	398	5 4 T	5824	CD -32 395	, f	0 57 03.2	-32 14 04	A9V	9.64	0.32	0.00	ь рр
182	399	741		CD -27 317	, ,	0 57 16.0	-27 01 54	A3/5	11.12	0.17	0.10	Dr
183	402			CD-25 390	,	05728.9	-25 00 00	A7 A5	10.01			
104	404			C 5 2 2 0 4 2 2 8	f	05754	-23 24 00	A3	13.0	0.31	0.04	DR
186	404	A 1 I I		0322942-20	•	0 58 00	-20 33 04	A5	11.6	0.51	0.04	DI
187	405	4111		CD -28 307	ſ	0 58 00	-28 28 00	A	13 15			
188	403	4211		00-20 301	f	0 58 27 7	-28 21 37	A 2	14 23	0 21	0.04	DR.
189	410	4311	CH183			0 58 54	-33 59 00	B	12.57	-0.16	-0.99	AT
190	110	44II	011100			0 59 09.7	-23 31 47	Ā7	12.15	0.36	-0.07	EG
191			6088	CD -26 334	ſ	0 59 23.9	-26 09 20	A5	9.75			
192	411	75I		CD -30 314	f	0 59 37.4	-29 47 22	A5	12.83	0.29	-0.0 2	DR
193	414	77I	6178	CD -32 410	f	1 00 03.2	-31 49 14	A1/2IV	5.49	0.10	0. 12	Е
194	413	76I		CD -31 412	ſ	1 00 04.6	-31 29 28	A8	10.42	0.32	0.08	\mathbf{E}
195				CS22942-37		1 00 38	-23 34 36	Α	14.15	0.10	0. 21	Р
196	415					1 00 42	-21 39 00	Α	13.8			
197	416	78I	GD673	CD -30 324	f	1 00 49.5	-29 59 42	B9/A0	11.19	-0.01	-0.33	PH
198	418			E 29.2.132	f	1 00 52	-29 27 36	A5	13.24	0. 21	-0.03	DR
199	421				J	1 01 18	-28 01 00	В	13.08			
2 00			CH186		,	1 01 19.3	-25 35 04	A5	13.91	0.24	0.04	DR
201	42 0	7 9I		CD -24 469	1	1 01 24	-24 17 12	A 0	12.77	0.09	0.14	Р
202	400		CH185		,	1 01 18	-27 06 00	A	14.6	0.00	0.10	FC
203	423	4511	6240	CD 25 261		10136	-33 55 00	AU 4917	13.83	0.06	0.10	EG BW
204	440	801	0340	CD - 35 301 CD - 32 371		1 01 38.5	-34 30 40	A2V A7	0.99	0.08	0.03	D 11
205	420			BD -20 189		1 01 42	-22 30 00	Ε Ο	10.4			
207	431	82I	6365	CD -30 330	f	1 01 53 5	-30 17 23	A3III/IV	9.81	0.26	0.05	Е
208	430	811	6364	CD -27 345	f	1 01 53.7	-27 25 21	A5/7III	9.62	0.28	0.03	BW
209	432	•	CH189	CS22942-31	f	1 02 11	-26 47 48	A	14.98	0.08	0.14	P
210			DR19	CS22942-32	f	1 02 36	-25 58 00	A2	14.63	0.22	0.01	DR
211	433	84I	6451	BD -20 191		1 02 45.9	-20 07 19	A7V	8.56	0.24	0.16	ВW
212				BOK358F	ſ	1 02 57.9	-29 11 36	Е	14.80	0.34		В
213	435	4 6II			f	1 03 13.7	-24 14 16	A 0	13.38	-0.03	-0.11	EG
214	439			BD -20 193		1 03 24	-20 03 00	A2	10.7			
215			6515	BD -22 193		1 03 24.7	-21 50 01	A5	8.48	0.37		CS
216	440		6516		f	1 03 27.3	-25 44 57	A 9 V	9. 22			
217	441	83I	6532	CD -27 355	f	1 03 31.4	-26 59 45	A2m	8.43	0.15	0.06	DR
218	442			CD -28 345	f	1 03 36.8	-27 48 11	A7	12.09			
219				KR3	J	1 03 44.3	-31 22 53	_	14.65	0.06		KR
22 0				BOK312F	J	1 04 07.6	-30 07 53	E	14.50	0.32		в

477

463L	
68	-
÷	
ъЛS	
9882	

TABLE 5-Continued

Noª	SB ^b	PS ^c	ID ^d	CD, others ^e	Bł	R.A.	Dec.	Spectral	$m_V{}^h$	B-V	U-B	Si
						(1950)	(1950)	type ^g				
				····				· · · · · · · · · · · · · · · · · · ·				
221	44 6	47II	CH191	GD6 7 9	ſ	1 04 24	-33 34 00	В	13.58	- 0. 3 0	-1.12	EG
222				BOK255F	ſ	1 04 26.7	-29 13 05	E	14.79	0.34		В
223			SP280		f	1 04 26.9	-30 34 16	A2w	13.08			
224	449	48II			3	1 04 34.6	-28 23 45	A 0	13.15	0. 22	0.01	DR
225	451	85I	66 7 0	CD -30 348	J	1 04 38.1	-29 52 56	A9V	9.38	0. 34	-0.04	DR
226	45 0	86I	6668	CD -24 496	, ,	1 04 47.3	-24 15 45	A5	6.36	0.17	0.09	BW
227	453	4911	. -	~~	,	1 05 00	-32 35 00	FO	12.88			-
228			6724	CD -29 334	,	1 05 11.3	-29 33 13	FOV	9.29	0.35		E
229	455	871	6723	CD -29 335	J	1 05 12.6	-28 58 16	A8V	9.08	0.28	0.01	DR
230	456					1 05 12	-33 43 00	A	14.1			
231	407	801		BD 99 906		1 05 48	-20 07 00	AZ AE	12.8			
404	400	091	CH109	DD -22 200	1	1 06 04.7	-22 23 39	AD D	11.90	0 99	0.08	C 9
400	409	001	CH102	CL 221061	ŕ	1 06 04.5	-32 59 31	ь •	14.40	-0.43	-0.98	05
234	460	001	CH104	CD 97 379	f	1 06 12	-32 00 00	R R	19.59	0.15	0.61	DR
230	400	901	6855	CD -34 439	•	1 06 20 5	-21 09 00	FOV	Q AA	-0.13	-0.01	CS
230			KR7	BOK125F	ſ	1 06 23 3	-28 57 16	E	14 69	0.30		B
238			11107	E29 0 197	f	1 06 25	-29 08 36	E	12.52	0.34		E
239	462	5011		E20.0.101		1 06 30	-21 47 00	A0	13.36	0.07	0.20	ĒG
240	102	0011		CI-331066	f	1 06 36	-33 26 00	B	12.05	0.01	0.20	2.4
241	463	91I	CH195	CD -33 421	f	1 06 42.4	-33 23 58	B4	12.16	-0.15	-0.1	GW
242	464	92I		CD -33 423	ſ	1 07 00.4	-32 55 41	A2	12.5			
243	466	51II				1 07 06	-22 57 00	A3	12.88	0.28	0.04	EG
244	467				f	1 07 04.8	-26 55 43	FO	13.36	0.41	-0.21	DR
245	469				f	1 07 35.5	-28 14 29	Α	13 .10	0.36	-0.14	DR
24 6	471	93I		CD -34 450		1 07 48	-34 01 00	F0	10. 7			
247			7038	CD -35 407		1 07 55.2	-34 46 08	F1	9.38			
248	474	52II		HL3361	f	1 08 07.0	-26 20 42	A 0	13.18	-0.0 2	-0.05	DR
24 9	473			HL7200	f	$1\ 08\ 07.4$	-25 56 40	A 0	14.28	0.01	0.03	DR
2 50	477	94I		BD -22 210		1 08 36	-22 16 00	$\mathbf{F}0$	10.7			
251	480	53II		CS22946-01		1 08 51	-21 54 48	A 0	13.04	0.00	0.06	\mathbf{EG}
252				BOK 96F	3	1 08 56.1	-30 03 40		14.90	0. 34		B
253	481	95I	7184	CD -27 389	,	1 09 26.7	-26 37 18	A2III/IV	9.88	0.21	0.07	DR
254	485	54II	CH201	GD691	,	1 09 48.0	-26 29 20	A 0	13.15	-0.24	-1.04	DR
255	486	5511		CTD 00 400		1 09 59.4	-21 44 15	A0	12.96	0.08	0.11	EG
256	488	961		CD -23 439		1 10 00	-23 06 00	AU A2	12.0			
207	493	9/1		CD -23 448		1 10 30	-22 52 00	A3 A5/F0	11.0			
200	490	5611		CD -34 405	f	1 10 52.7	-34 02 09	ASTO	10.0			
209	495	5011		CD -22 422	•	1 10 34	-32 47 00	A 47	12.70			
261	499		7400	00-22 422	ſ	1 11 24	-22 11 00	F0	9 73			
262	502	981	1100	CD -30 389	ſ	1 11 33 1	-30 02 15	A3	12 24			
263	502	501		CD -30 303	Ĵ	1 11 36	-26 40 00	A5	14 25	0.24	-0.03	DR
264	504	991		BD -22 217		1 11 48	-22 13 00	FO	11.1	0.21	-0.00	DR
265	505	57II				1 11 59.8	-21 17 40	A5	12.16	0.21	0.12	EG
2 66			DR44		ſ	1 12 30	-28 14 00	A2	14.00	0.29	-0.04	DR
267	509	100I	7553	CD -23 462		1 12 56.3	-23 11 06	A5	9.57			
2 68	511		7 6 2 9	CD -24 548	ſ	1 13 29.5	-24 14 11	FOIII	7.13	0.30		CS
2 69	512	101I		CD -26 414	ſ	1 13 37.2	-25 58 22	A7	11.99	0. 2 9	-0.01	DR
27 0	514	102I	7652	CD -24 549	ſ	1 13 42.3	-24 10 04	A1V	10.07	0.11	0.08	BW
271	515		7676	CD -34 483		1 13 47.5	-34 24 44	A3m	8.38			
272	516		CH202	KR12	f	1 14 09.2	-27 11 15	A1	14.81	0.08	0.19	DR
273	517	103I		CD -32 498	f	1 14 18	-32 08 00	A3	11.6			
274	519	58II		KR13	f	1 14 36.0	-27 14 48	A 0	13.45	0.03	0.10	DR

 $\ensuremath{\textcircled{}^\circ}$ American Astronomical Society • Provided by the NASA Astrophysics Data System

No ^a S	SB ^b	DSC					TABLE 5—Continued												
		15	ID ^d	CD, others ^e	Bł	R.A. (1950)	Dec. (1950)	Spectral type ^g	m _V ^h	B-V	U-B	Si							
275	520		CH203	KR14	ſ	1 14 36.0	-28 01 46	A 0	14.54	0.05	0.09	DR							
276	521					1 14 48	-34 31 00	Α	14.3										
277	522	104I		CD -32 501	f	1 14 54	-32 22 00	A2	11.59										
278			SP295		f	1 15 28.4	-30 02 57	Aw	14.0										
279	528	105I	7875	CD -24 562	f	1 15 40.6	-24 0 16	A2	9.71	0.30	0.13	BW							
280	529	107I	7876	CD -25 515	f	1 15 41.7	-24 48 07	A2	10.05	0.20	0.07	BW							
281	530	106I	7898	CD -34 494		1 15 44.3	-34 24 00	A9IV	7.74	0.26		CS							
282	531	108I	7908	CD -23 477		1 16 01.0	-23 16 31	A7III	7.29	0.28		CS							
283	532	59II			ſ	1 16 00	-33 23 00	A 0	13.65	0.08	0.21	\mathbf{EG}							
284		60II		GD696		1 16 48.4	-23 10 02	A 0	14.38	0.00	0.02	\mathbf{EG}							
285	534					1 16 42	-20 59 00	FO	13 .0										
286	535	109I	8033	CD -23 483		1 16 58.2	-23 22 10	FOV	9.19	0.31		CS							
287	537	62II			f	1 17 07.2	-26 57 33	A7	12.96	0.28	0.10	\mathbf{EG}							
288	539			CD -23 488		1 17 26.9	-23 12 04	A5/F0	9.0										
289	543	110I	8091	BD -21 213		1 17 32.4	-21 10 44	A5	10.6										
2 90	544	111I		CD -23 492		1 17 36	-22 45 00	A2	12.5										
291			8145	CD -30 434	f	1 18 03.6	-29 51 41	F2V	8.45	0.32		CS							
292		112I	8163	CD -27 443	f	1 18 19.6	-26 37 46	A9/F0V	10.18										
293	549	113I		BD -21 217		$1 \ 18 \ 54$	-21 20 00	A2	11.3										
294	551	114I		CD -26 442	ſ	1 19 05.4	-26 16 11	A 0	10.79	0. 21	0.07	PW							
295	55 2	115I		CD -23 500		1 19 12	-23 02 00	A3	11.5										
296	554				f	1 19 36	-32 06 00	A 0	13.92										
297	55 7	116I		CD -23 504		1 19 48	-23 28 00	A 0	11.1										
2 98	559	117I		CD -24 590	f	1 20 00	-23 51 00	A 0	12.3										
2 99			SP298		ſ	1 20 24.5	-28 40 10	A1w	14.25										
3 00		118I		CD -28 421	f	1 20 30	-28 23 00	A7	11.67										
301	561		8380			1 20 18	-21 41 00	F0	8.09										
302	56 2			CD -26 452	ſ	1 20 28.0	-25 54 59	A7	11.51										
303	563		CH211		ſ	1 20 29.2	-30 10 15	Α	14.47										
304	567		8472	CD -25 554	ſ	1 21 01.9	-25 20 42	A 0	10.31	-0.07	-0.38	BW							
305	568		8487	CD -25 555	ſ	1 21 11.9	-24 36 47	A7Vn	6.65	0. 24		CS							

^aCatalog number.

^bSlettebak and Brundage 1971.

^cPhilip and Sanduleak 1968, lists I and II. Four stars from PS-60I, 72I, 40II, and 61II-were omitted from the catalog as they are all later spectral types than F stars.

^d Identifications, HD number; CH, Chavira 1958; SP, Philip and Stock 1972; DR, Drilling 1977.

^cCD number, BD number; CS, Pier 1983; E, Eriksson 1978; KR, Ratnatunga 1983; BOK, Bok and Basinski 1964; CI, CSI (Ochsenbein, Bischoff, and Egret 1981); LB, Luyten 1966; HL, Haro and Luyten 1962; GD, Giclas, Burnham, and Thomas 1972. ^fStar is in box area.

⁸Spectral types with luminosity classification are from Michigan Spectral Catalog (Houk 1978); others are the estimates from original finding lists.

^hMagnitudes to two decimal places are from UBV or uvby photometry. Those to one decimal place are the estimates from original finding lists.

ⁱSources for *UBV* photometry: AT, Andrews and Thackeray 1973; B, Bok and Basinski 1964; BI, Iriarte 1970; BW, Westerlund 1963; CS, Cousins and Stoy 1963; E, Eriksson 1978; EG, Eggen (in Rodgers 1971); DR, Drilling 1977; P, Pier 1983; PH, in Philip 1974; PW, Penston and Wing 1972.

TABLE 6 Strömgren Photometry, Radial Velocities, D(0.70) and W(K) Values, for SGP Stars

No	ID ^a	$b - u^b$	<i>m</i> .1	61	BV [¢]	$D(.70)^{d}$	W(K) ^{e,f}	S ^g	comments
110	12	U g		¢1	$(km s^{-1})$	(Å)	(Å)	0	comments
					(()	()		
1	122						1.0^{e}		
3	124	0.190	0.184	0.704				нн	h
6	126				+32		0.3 ^e		
9	133 1II	0.048	0.127	1.354	-115	^d 16.0	0.5	Ph	
10	134 11	0 202	0 235	0 734	°+29	1010	010	Ph	h
12	136 2H	0.080	0 170	1.056	+42	26.9	2 39	Ph	
13	1667	0.172	0 197	0.857	1	20.0	2.00	нн	h
15	143	-0.090	0 270	-0 250				GS	h
18	311	0 229	0 166	0.583	+67	12.3	5 53	Ph	
20	147	-0.175	0.054	-0.204	101	12.0	0.00	GS	
24	153 71	-0.029	0.138	0.659	¢-5			AM	h
26	161 81	0.059	0 221	1 002	°-5			нн	h
27	162 91	0.000	0.125	0 796	¢+13			нн	h
28	163	0.201	0.166	0.580	110			нн	h
20	167 101	0.024	0.168	1 097	¢+1			нн	h
20	160 101	-0 121	0.100	-0.168	1 -			GS	h
31	171	-0.121	0.111	0.485				CS	h
32	179 111	0.073	0.111	0.400	+11	20.8	0.57	05	
22	172 111	0.008	0 120	1 200	711	20.0	0.57	FB	h
25	178	0.100	0.150	0.330				нн	h
20	170 411	0.301	0.000	0.559	55	14.9	3 70	Dh	
27	199411	0.100	0.194	1 202		14.2	5.70	Dh I II	h
31	101 131	0.147	0.200	1.290	C 1 92			Ph	h
30	102 141	-0.011	0.156	1.044	° + 23			rn uu	h
40	101 511	0.100	0.170	0.930	120		0.41		h
41	191 511	0.251	0.239	0.950	-132		0.4		h
45	192 611	0.054	0.100	1.254	10	00.7	0.7	P II Dh	
40	194 /11	0.100	0.100	0.000	-12	22.1	2.01	гл UU	h
41	197 171 109 9H	0.235	0.129	0.000	1.40	10 4	4.95		
49	198 811	0.156	0.182	0.849	+40	10.4	4.20	rn uu	
50	199 101	0.000	0.200	0.993	+34	20.1	1.47	Dh	h
52	911	0.493	0.109	0.020	-30	96.9	2.1*	F II Dh	
23 E4	202 1011	0.097	0.159	1.047	+109	20.0	2.03	гп	h
54 50	203 191	0.079	0.132	1.047	±1		0.41	Dh	h
50	208 1111	0.039	0.172	1.344			0.4	1 11	
01 E9	1411 910 1911	0.016	0 1 2 6	1 955	1.99		0.4	Dh	h
00	210 1311	0.010	0.130	1.200	+44	416 0	0.5	Dh	
60		-0.005	0.141	1.043	-119	10.0	0.4	רח עע	h
01	213 211	0.207	0.105	0.711				1111 UU	h
60	2960	0.215	0.107	0.720	105	n 2 n	1 99		i
00		0.077	0.134	1.313	-105	23.2	1.55	ги 1111	h
67	222 221	0.131	0.191	0.000	15	95.0	0.99		i
00	225 1011 991 1711	0.000	0.157	1.200	-15	417 A	0.62		
71	231 1711 995 1911	0.013	0.112	1.179	-30	24.1	0.5		venichle
12	200 1011 006 001	0.000	0.137	1.242	-31	24.1	0.55		h
75	200 201 Career 19	0.171	0.149	0.775	+0		0.54	nn	
76	2200	0 900	0 169	0 499	T 94		0.0	UU	h
70	3300 949 951	0.200	0.102	0.420	6 14			UU	h
11	242 201 2220	0.100	0.230	0.123	*+14			nn uu	h
18	0000 00000 05	0.443	0.190	0.040	. 10		0 50	пп	
19	044004-40 946 10TT	0 191	0 190	1 999	+19	don o	1.0	Dh	
01	240 1911 961	0.101	0.120	1.434	+0	41.0	1.4*	rn uu	h
04	201	0.100	0.100	0.710				11 11 11	h
04 02	440 954 901	0.190	0.102	0.009				un un	h
80 077	204 291 956 901	0.116	0.201	0.908	6			лп uu	h
87	200 301	-0.070	0.125	0.490	*+9	04.0	1 71	лп рь	
00	207 2011 950 9111	0.090	0.131	1.444	+01	490 0	1.71	ר וו סג	
89	209 2111 964	0.019	0.100	1.208	-9	° ∠ 0.0	0.5*		h
90	204	0.242	0.092	0.044			F 07	60 111	i
91	203 311 979 9911	0.115	0.206	0.812	+22	0.1 170	0.31 994	Dh Dh	-
93 04	414 4411 979 991	0.101	0.101	0.009	-30	11.0	0.04	C 6	h
94	410 331	0.444	0.000	0.000				G D	

480

TABLE 6-Continued

No	ID ^a	b – y ^b	m_1	c1	RV ^c (km s ⁻¹)	D(.70) ^d (Å)	W(K) ^{e,f} (Å)	Sg	comments
05	976 9911	0.075	0.170	1 202	±0 9	d170	1 25	Ph	
95 96	270 2311 277 34I	-0.060	0.170	0.685	794	17.0	1.4	нн	h
97	279 24II	0.228	0.136	0.658	-44	12.8	3.86	Ph	
99	283 25II	0.031	0.124	1.222	-32	^d 21.0	0.7 ^f	$\mathbf{P}\mathbf{h}$	
100	284 35I	0.040	0.219	0.987	-10	21.7	2.65	HH	
101	285 26II	0.097	0. 218	0.925	+42	$d_{25.0}$	1.7 ^f	\mathbf{Ph}	
102	286 37I	0.217	0.140	0.856		0.4.1		HH	n
103	287 361	0.061	0.207	0.969	-24	24.1	1.14	Ph	
104	200 301 204 301	0.100	0.214	0.779	-39	10.9	2.41	пп СS	h
107	294 391 293 401	0.001	0.109	1 070				нн	h
109	298 27II	0.034	0.178	1.208	+8	25.5	2.60	Ph	
110	41I	0.230	0.137	0.553	°+14			нн	h
111	299 42I	0.133	0.210	0.851	+54	17.4	3.53	HH	
112	300	0.223	0.151	0.632				нн	h
113	301				-84	12.3	2.39		
114	302 28II	0.055	0.201	1.006		^a 27.0	0.4	Ph	
116	306 451	0.074	0.209	1.033	-4	29.3	2.14	Ph UU	
110	307 441 319 47I	0.077	0.100	0 784	+24	29.3 15.6	2.90	Ph	
121	C22942-04	0.105	0.201	0.104	+95	10.0	1.0 ^e	• •	
122	314 49I	0.192	0.167	0.722	¢-17			\mathbf{Ph}	h
123	315				+82	2 0.8	3.12		
124	316 50I	0.251	0.145	0.669	-11	7.1	4.35	L	
125	317 29II	0.170	0.193	0.756	-76	17.0	3.65	\mathbf{Ph}	
126	318 51I	0.051	0.179	0.952	-24	27.4	1.08	нн	
127	320 521	0.121	0.219	0.907	+17	16.0	3.27	HH	
120	322 3011	0.079	0.205	0.993	+44	24.0	2.90	Ph	
131	327	0.195	0.192	0.736	-9 +10	14.0	0.70	нн	h
132	329 54I	-0.016	0.137	0.968	°+19			Ph	h
133	330 31II	0.222	0.105	0.489	+51	11.8	1.71	Ph	
135	333	0.224	0.155	0.580	+4	10.4	4.07	HH	
136	4689	0.255	0.165	0.489				HH	h
137	335 55I	0.198	0.190	0.769	+21	14.2	4.39	Ph	
138	337 561	0.173	0.152	0.880	-16	11.8	3.41	Ph	
139	338 340 571	0.179	0.127	0.950	¢ 1.6			65 121-	h KK Lyrae
140	C22942-09	0.004	0.105	1.200	-5		1.6°	гп	
142	342 58I	0.230	0.118	0.512	+27	9.9	1.43	GS	
143	344 59I	0.111	0.195	0.936	-8	26.0	1.96	\mathbf{Ph}	
144	343	0.212	0.226	0.618	-18	11.8	5.99	HH	
146	E30.1.036	0.211	0.130	0.595	+87	11.3	5.47	L	
147	E30.1.041	0.288	0.134	0.562	+37	9.0	5.84		ь
148	4974	0.219	0.160	0.684	46	90 7	1 45		i
150	530 5211 691	0.134	0.160	1.045	-40 ¢_1.4	29.1	1.45	Pn uu	h
152	353	0.219	0.102	0.700	+31		0.6*	nn	
154	354 33II	-0.001	0.109	0.932	+68	^d 9.5	0.1 ^e	Ph	
156	360 34II	-0.114	0.129	-0.209	-4		0.4 ^f	Ph	h
158	361 63I	0.150	0.193	0.886	+3	19.8	2.74	Ph	
159	362 35II	0.064	0.157	1.254	-32	^d 20.0	0.5 ^e	\mathbf{Ph}	
160	363 36II	0.129	0.117	1.2 00	+106	^d 18.0	1.7^{f}	\mathbf{Ph}	
161	366 37II	0.104	0.199	0.888	-22	23.6	3.02	Ph	
162	367 641	0.204	0.173	0.774	+20	11.3	2.12		
163	371 3811 373 2011	0.235	0.135	0.870	-19	9.4	3.85	Ph Ph	UV Scl.
165	375 65I	-0.028	0.193	0.878	-10 c-26	⊿4.0 16.5	3.U9 0.33	гл Рհ	
167	377 66I	0.057	0.201	1.028	+32	19.8	2.47	Ph	
168	379 67I	0.121	0.183	0.926	-24	23.1	2.72	Ph	
172	384 68I				-18	10.9	4.11		
173	386	0.202	0.200	0.704	-61	11.8	3.95	HH	

TABLE 6-Continued

No	ID ^a	$b - y^b$	m_1	c ₁	RV^{c} (km s ⁻¹)	D(.70) ^d (Å)	W(K) ^{e,f} (Å)	S ^g	comments
4									
174	387 70I	0.210	0.157	0.749	-90	10.8	2.91	\mathbf{L}	
175	388 691	-0.009			+78	18.9	0.42		
176	389				-28		1.1°		ь.
177	390 711	-0.050	0.097	0.494	°+10			Ph	h b
180	393 731	0.111	0.194	0.926	°+10			Ph	n
181	398	0.189	0.159	0.716	-7	10.9	3.05	HH	
182	399 741 CD 95 200	0.095	0.222	1.005	-10	22.7	3.09	Ph	
183	CD-25 390	0.300	0.081	0.633	-16	7.1	3.46	L	
185	404	0 999	0.150	0 700	+34	10.7	3.2°	DI.	
100	403 4111	0.228	0.150	0.722	-63	13.7	5.44	Pn	kpp r
107	408 4911	0.237	0.075	0.972		dee	oof	GS	"RR Lyrae
100	408 4211	0.142	0.171	0.913	-14	°22.0	0.97	Pn	Ь
189	410 4311	-0.114	0.066	-0.049	+59	0 F	0.4	Ph	
190	4411	0.252	0.139	0.499	+4	8.5	5.16	Pn	
191	411 751	0.213	0.100	0.630	-12	11.3	4.20	пп	
192	411 701	0.191	0.103	1.000	+132	15.1	3.55		h
193	414 771	0.041	0.107	1.009	+4	19.9	4 5 9		
194	413 101	0.194	0.195	0.000	-11	12.8	4.00 1 4 ^e	пп	
107	A16 781	0.018	0 1 8 2	0 705	-90	15 1	1.4	Dh	
108	418	-0.010	0.105	0.703	+23 +01	13.1	3.80	T.	
100	410	0.271	0.090	0.091	+ 51	15.2	3.80	сs СS	h
200	CH186	0.520	0.004	0.233	-82		3 20	65	
200	420 791	0.051			+145	24 0	2.16		
203	423 45II	0.001			-41	21.0	0.3		
204	426 80I	0.041	0.212	1 004	°-2		0.0	нн	h
207	431 82I	0.150	0.164	0.822	-1	13.7	2.41	нн	
208	430 81I	0.157	0.220	0.707	$+13^{-}$	13.2	2.64	Ph	
209	432				+2		0.4 ^e		
210	DR19				+72		1.5^{e}		
211	433 84I	0.116	0.257	0.885	^c -5			HH	h
213	435 46II	0.007	0.124	1.044	+119	22.2	0.63	Ph	
215	6515	0.223	0.167	0.583	°+16			HH	h
216	44 0	0.236	0.142	0.527	+25	9.0	3.93	HH	
217	441 83I	0.084	0.236	0.838	°0			Ph	h
218	442	0.329	0.061	0.303	-94	5.2	3.30	GS	
221	446 47II	-0.121	0.088	-0.150	+21		0. 4 ^f	\mathbf{Ph}	h
223	SP280	0.325	0.086	0.290	-17	5.7	3.18	\mathbf{L}	
224	449 48II	0.170	0.113	0.935	+82	$^{d}15.0$	1.0^{f}	\mathbf{Ph}	
225	451 85I	0.213	0.150	0.65 2	+22	11.3	3.30	HH	
226	450 86I	0.140	0. 2 09	0.829	$^{c}+15$			\mathbf{Ph}	h
227	453 49II	0.265	0.118	0.851	+28		0.4 ^f	Ph	^h RR Lyrae
228	6724	0.253	0.145	0.615	°+1			HH	h
229	455 87I	0.178	0.171	0.746	^c +2			НH	h
233	459 88I	-0.11 2	0.109	-0.033	+1	15.6	0.10	\mathbf{Ph}	
235	460 90I	-0.069	0. 128	0.404	+182	15.1	0.30	\mathbf{Ph}	
236	6855	0.231	0.164	0.5 72	$^{c}+11$			нн	h
238	E29.0.197	0.283	0.197	0.417	+1	. 8.0	6.41	L	
239	462 50II	0.035	0.138	1.348	+147	^{<i>a</i>} 17.6	0.5 ¹	\mathbf{Ph}	
240	CI-331066	0.357	0.203	0.383	+13	4.7	6.61	L	
241	463 9 1 I	-0.078	0.120	0.269	+259	11.8	0.33	\mathbf{Ph}	
242	464 92I	_ · · -			-36	29.8	1.30		ь.
243	466 5111	0.184	0.178	0.685	+26		2.2 ¹	Ph	n
245	469	0.253	0.088	0.526				GS	n b
247	7038	0.252	0.179	0.565	-	d	.	HH	16
248	474 5211	0.002	0.129	1.138	-34	417 .0	0.4	Ph	
251	480 53II	0.004	0.134	1.209	+85	~17.5	0.1	Ph	
253	481 951	0.116	0.213	0.879	+18	20.8	2.36	Ph	Ь
254	485 5411	-0.105	0.083	-0.055	-42	F	0.4	Ph	12
255	486 5511	0.031	0.150	1.271	-6	21.7	1.46	Ph	
259	495 5611	0.187	U.124	0.790	-2	~16.0	1.67	Ph	
26U	491				+14	13.7	3.83		1

482

No	ID ^a	$b - y^b$	m_1	c1	RV^{c} (km s ⁻¹)	D(.70) ^d (Å)	W(K) ^{e,f} (Å)	S ^g	comment
	400	0.000	0.185	0 711					
201	499	0.209	0.175	0.711	+14	8.0	3.04	пп	
202	502 981	0.059	0.196	0.924	+99	29.8	2.05		h
204 0.05	504 991	0.109	0.210	0.609	. 11	01 7	2.96		
205	505 5711 500 1001	0.102	0.183	0.875	+11	21.7	3.20		h
267	509 1001	0.213	0.158	0.684	6 1			Pn	 h
268	511	0.184	0.179	0.755	°-1 6.47	10.0	0 70	нн	
269	512 1011	0.200	0.004	1 000	°-47	12.8	2.79	Ы	
270	514 1021	0.061	0.224	1.022	0	19.0	1.88	Ph	Ь
271	515	0.085	0.280	0.715	°+11		1.05	нн	
273	517 1031	0.010	0.105	1 000	+247	28.3	1.75	DI	
274	519 5811	0.013	0.167	1.260	+200	⁴ 22.0	0.4	Pn	
277	522 1041	0.043	0.000	0.000	+58	19.4	1.72	****	
279	528 1051 500 1071	0.165	0.239	0.832	-72	15.6	2.59	HH	
280	529 1071 520 1071	0.085	0.211	0.992	+31	26.9	1.56	нн	h
281	530 1061	0.158	0.182	0.821	*+3			HH	h.
282	531 1081	0.196	0.136	0.660	*+11		o. 1	HH	ь
283	532 5911	0.042	0.169	1.246	+26		0.4	Ph	<i></i>
284	6011	-0.011	0.163	1.152	-26	17.0	0.36	Ph	ь.
286	535 1091	0.179	0.205	0.645	°+15			нн	n
287	537 6211	0.166	0.191	0.775	-53	16.1	4.48	Ph	ь.
291	8145	0.192	0.196	0.772	°-5			нн	п
292	1121				-18		2.81		
294	551 1141	0.110	0.165	0.914	-41	18.4	3.25	L	
295	552 1151	0.140	0.000	1 000	+5	27.4	2.75		h
296	554	0.140	0.090	1.230		05.5	1 00	GS	
297	557 1161				+2	25.5	1.89		
298 200	559 1171 CD000	0.001	0.144	0.007	-7	24.6	2.54	-	
299	5P298	0.221	0.144	0.397	-21	14.6	1.10		
300	1181	0.300	0.089	0.548	+16	ð.U	4.42		h
301	501	0.233	0.273	0.687		10 7	0.00	нн	
30Z	562 563	0.218	0.094	0.689	+28	12.7	2.96	ь т	
303	563	0.069	0.108	1.146	+191	25.5	0.41		
304 905	567	-0.018	0.113	0.601	-26	10.9	0.13	HH	h
305	202	0.138	0.209	0.815	°-1			нн	~

^a Three-digit numbers are SB, numbers with "I" or "II" are PS, others are as in Table 5.

^b Where b - y alone is given, it has been derived from B - V via Kurucz 1979 models.

^cRadial velocity is from Abt and Biggs 1972. ^dD 0.70 was derived from D 0.80 values (Rodgers 1971) via Kurucz 1979 models.

^eW(K) is from Pier 1983. The radial velocity cited is also from that paper.

^fW(K) is from Rodgers 1971 or Rodgers, Harding, and Sadler 1981, as is the radial velocity cited. Other than results marked with footnotes c-f radial velocity, D 0.70 and W(K) values are from the present paper. ^gThe sources of the *uvby* photometry: HH, McFadzean, Hildich, and Hill 1983; Ph, Philip 1974 and 1986; GS, Graham and Slettebak 1973; EB, Eggen and Bessel 1978; AM, Albrecht and Maitzen 1980; L, this

paper. ^hNo spectrum was available, so that gravities and temperatures were found from *uvby* photometry only. The photometry was not consistent with spectral indices—PS 15II and PS 16II are discussed in III*d*. For PS 32II, b - y was derived from Eggen's B - V, as it was consistent with other measures, rather than Philip's

b - y. For PS 31I, the spectral type is around F2, in contrast to b - y of 0.115.

peculiar A stars, the mean $v \sin i$ for three M67 blue stragglers is 85 ± 30 km s⁻¹, and for five SGP A stars, 145 ± 33 km s⁻¹, a 2 σ difference. If the slowly rotating peculiar stars are included, then the difference, not unexpectedly, becomes less apparent: 66 ± 45 km s⁻¹ for the M67 stars and 105 ± 61 km s^{-1} for the SGP stars.

While there is a reasonable indication that the nonpeculiar SGP A stars have systematically higher rotational velocities than blue stragglers, the sample of blue stragglers presently available for comparison is too small to consider this result to be reliably established. It is clear that the SGP stars are not HB stars (whether metal-rich or metal-poor), with expected $v \sin i$ values of less than 30 km s⁻¹; so part of the first-category hypothesis, that the distant A stars might have been misidentified HB stars, is not supported. In the case of blue stragglers the rotational velocity criterion is less decisive, so their properties require further exploration.

In Paper II of this series, data on a large number of SGP A stars are derived, including surface gravities, temperatures, abundances, distances, kinematics, and ages. The sample is classified into Populations I and II. All the hypotheses concerning the origin of the distant Population I stars are critically examined in the light of these more accurate measurements.

- Abt, H. A. 1985, Ap. J. (Letters), 294, L103. Abt, H. A., and Biggs, E. S. 1972, Bibliography of Stellar Radial Velocities (Tucson: KPNO).
- Albrecht, R., and Maitzen, H. M. 1980, Astr. Ap. Suppl., 42, 29. Allen, C. W. 1973, Astrophysical Quantities (London: Athlone). Andrews, P. J., and Thackeray, A. D. 1973, M.N.R.A.S., 165, 1. Bok, B. J., and Basinski, J. 1964, Mem. Mount Strombo Obs., 4, 3.

- Bok, B. J., and Basinski, J. 1964, Mem. Mount Stromto Obs., 4, 3. Chavira, E. 1958, Bols. Obs. Tonantzintla, No. 17, p. 15. Cousins, A. W. J., and Stoy, R. H. 1963, Royal Obs. Bull., 64. Crawford, D. L. 1975, A.J., 80, 955. _______. 1977, A.J., 83, 48. _______. 1979, A.J., 84, 1858. Deutch, A. J. 1966, Carnegie Institute of Washington Year Book 65, 1965–1966, (Baltimore: Garmond/Pridemark), p. 148. ______. 1968, Carnegie Institute of Washington Year Book 67, 1967–1968, (Baltimore: Garamond /Pridemark), p. 24

- Giclas, H. L., Burnham, R., and Thomas, N. G. 1972, Lowell Obs. Bull.,
- 7. 217.
- Graham, J. A., and Slettebak, A. 1973, A.J., 78, 295.
- Gray, D. F. 1976, The Observation and Analysis of Stellar Photospheres (New York: John Wiley).
- Green, E. M., Demarque, P., and King, C. 1987, The Revised Yale Isochrones and Luminosity Functions (New Haven: Yale University Press).

- Greenstein, J. L., and Sargent, A. I. 1974, Ap. J. Suppl., 28, 157. Grønbech, B., and Olsen, E. H. 1976, Astr. Ap. Suppl., 25, 213. Haro, G., and Luyten, W. J. 1962, Bol. Obs. Tonantzintla y Tacubaya, 3,
- Hartkopf, W. I., and Yoss, K. M. 1982, A.J., 87, 1679. Houk, N. 1978, Michigan Catalogue of Two-Dimensional Spectral Types for the HD Stars, (Ann Arbor: University of Michigan Press). Iben, I. 1967, Ann. Rev. Astr. Ap., 5, 571. Iriarte, B. 1970, Bol. Obs. Tonantzintla, 5, 213. Keenan, F. P., Brown, P. J. F., and Lennon, D. J. 1986, Astr. Ap., 155,

- Kilkenny, D., and Hill, P. W. 1975, *M.N.R.A.S.*, **173**, 625. Kurucz, R. J. 1979, *Ap. J. Suppl.*, **40**, 1. Lance, C. M. 1988, submitted (Paper II).

V. SUMMARY

1. A catalog has been compiled of 305 early-type stars to F0 and 15th magnitude in 218 deg² at the SGP (see Tables 5 and 6).

2. Strömgren photometry and medium- and high-resolution spectra for many of the catalog stars have been obtained. Radial velocities, H δ line widths [D(0.70)], Balmer jumps (Strömgren c₁ indices), and Ca II K line equivalent widths have been measured and tabulated.

3. Rotational velocities $(v \sin i)$ were obtained for eight distant A stars and are typical of values for normal young MS stars.

My thanks to J. Norris, A. W. Rodgers, K. C. Freeman, J. Binney, and G. Rowley, for many valuable and interesting discussions on this work, and to B. Twarog, whose criticisms helped improve the presentation of this paper. I am grateful for the support of an Australian National University scholarship. Thanks also to the technical and academic staff of Mount Stromlo and Siding Spring Observatories, the Anglo-Australian Observatory, and the Department of Theoretical Physics, University of Oxford, for their assistance and facilities. Some of the SGP Catalog data were compiled from tapes supplied by the Strasbourg Stellar Data Center.

REFERENCES

- Luyten, W. J. 1966, A Search for Faint Blue Stars: XXXIX, The South Galactic Pole (Minneapolis: University of Minnesota Press).
- McFadzean, A. D., Hildich, R. W., and Hill, G. 1983, M.N. R. A.S., 205,
- Mermilliod, J.-C. 1982, Astr. Ap., 109, 37. Mihalas, D., and Binney, J. 1981, Galactic Astronomy (2d ed.; San Francisco: Freeman).
- Morgan, W. W., Keenan, P. C., and Kellman, E. 1942, An Atlas of Stellar Spectra (Chicago: University of Chicago Press)

- Newell, E. B., Rodgers, A. W., and Searle, L. 1969, Ap. J., 158, 699. Norris, J. 1987, Ap. J. (Letters), 314, L39. Ochsenbein, F., Bischoff, M., and Egret, D. 1981, A Astr. Ap. Suppl., 43,

- Penston, P. W., and Wing, R. F. 1972, Observatory, 93, 149.
 Perry, C. L. 1969, A.J., 74, 139.
 Peterson, R. C. 1985, Ap. J. (Letters), 294, L35.
 Peterson, R. C., Carney, B. W., and Latham, D. W. 1984, Ap. J., 279, 2007. 237.

- No. 12.
 Philip, A. G. D., and Sanduleak, N. 1968, Bol. Obs. Tonantzintla y Tacubaya, 4, 253.
 Philip, A. G. D., and Stock, J. 1972, Bol. Obs. Tonantzintla y Tacubaya, 6, 201.
 Pier, J. R. 1983, Ap. J. Suppl., 53, 791.
 Ratnatunga, K. U. 1983, Ph.D. thesis, Australian National University.
 Relyea, L., Matlock, L. T., and Philip, A. G. D. 1975, Dudley Obs. Rept., No. 9

- No. 9.

- No. 9. Rodgers, A. W. 1971, Ap. J., 165, 581. Rodgers, A. W., Harding, P., and Sadler, E. 1981, Ap. J., 244, 912. Sargent, W. L. W., Schecter, P. L., Boksenberg, A., and Shortridge, K. 1977, Ap. J., 212, 326. Sargent, W. L. W., and Searle, L. 1968, Ap. J., 152, 443. Slettebak, A., and Brundage, R. K. 1971, A.J., 76, 338. Slettebak, A., Collins, G. W., Boyce, P. B., White, N. M., Parkinson, I. D. 1975, Ap. J., 29, 137. Stetson, P. B. 1981a, A.J., 86, 1337. _______. 1981b, A.J., 86, 1882. ________. 1983. A.J., 88, 1349.

- . 1983, A.J., 88, 1349.

- Straižys, V., and Kuriliene, G. 1981, Ap. Space Sci., 80, 353. Strömgren, B. 1966, Ann. Rev. Astr. Ap., 4, 433. Sweigart, A. V., and Gross, P. G. 1976, Ap. J. Suppl., 32, 367. Taam, R. E., Kraft, R. P., and Suntzeff, N. 1976, Ap. J., 207, 201.

484

.463L

68.

- Tobin, W. 1986, Astr. Ap., 155, 326. Tobin, W., and Kaufmann, J. P. 1984, M.N.R.A.S., 207, 369. Tobin, W., and Kilkenny, D. 1981, M.N.R.A.S., 194, 937. Twarog, B. A. 1980, Ap. J., 242, 242. _______. 1987, private communication. Twarog, B. A., and Tyson, N. 1985, A.J., 90, 1247. Uesugi, A., and Fukuda, I. 1970, Mem. Faculty of Science, Kyoto Univ., No. 33, Art. 5.

- van der Kruit, P. C., and Searle, L. 1981, Astr. Ap., 95, 116.
 Westerlund, B. W. 1963, M.N. R. A.S., 127, 83.
 Wielen, R., 1977, Astr. Ap., 60, 263.
 Wielen, R., and Fuchs, B. 1982, in Kinematics, Dynamics, and Structure of the Milky Way, ed. W. L. H. Shuter (Dordrecht: Reidel), p. 81.
 Wolff, S. C. 1983, The A Stars: Problems and Perspectives (Washington, DC: NASA).
- C. M. LANCE: Mount Stromlo and Siding Spring Observatories, Private Bag, Woden Post Office, A.C.T. 2606, Australia