
Department of Computer Science

Introduction to Unix

Kate Lance

March 1996

Contents

1 Unix Overview

1.1 The Computer Science network

• We run a system of powerful multi-user workstations which support both staff and
students. Most people access the computers via X-terminals, which provide window-
system graphical displays. From the user’s point-of-view, it is just like working at the
computer itself.

• The computers are mainly Sun SPARCstations, which run a version of the Unix oper-
ating system called Solaris.

• All users of the computers are allocated their own area of disk space, their home direc-
tory, often called just ~ (tilde).

• When you start a work session, you are logged on to your home directory, which contains
a number of files to set up and define your working environment. All of the names of
these files start with the . (dot) character.

• When you type in a command, you are actually operating a program called a shell, which
interprets and executes commands from users to the kernel, the software interface to
the machine hardware.

• All of the space on disks is arranged in a hierarchy, or tree. Each level of the tree is
symbolised by a / character. The top level is just called /; the next level down, for
instance, might have executable programs in /bin; files of source code in /src; and
directories for users in further levels under /home.

1.2 Your home directory and initialization files

• On our computers we use a shell called bash. It is defined by several files:

– ~/.bash profile: this contains commands to set up shell and environment vari-
ables. This file is owned by the system and you may not change it.

– ~/.bashrc: this contains your $PATH and a number of abbreviations (aliases) for
long commands. It is also owned by the system.

– ~/.user profile: the file for you to set your own variables.

– ~/.userrc: the file for your $PATHs and abbreviations.

1

The X11 window system provides your graphical interface. It’s appearance is defined by
three files installed in your home directory. They are:

• .Xresources: this mainly sets up the size and font of the windows, called xterms.

• .twmrc: this is a setup file for the twm window manager, the program that runs
your X11 session. Menus are defined, such as one for the machines you can log into,
another for functions such as Logout or refresh, plus default variables and mouse
button settings.

• .xsession: this actually starts up your xterm windows, clocks, calendars, email indi-
cators (xbiff), and other programs.

1.3 Passwords and security

• When you log on, you enter your login name and a password (which does not appear
on the screen).

• Your password must be at least 6 characters long, up to 8 characters, with at least one
digit or special character.

• Your password must be changed every few months or so, with the command yppasswd.

• Do not use any dictionary words, personal names, usernames, work-related names,
nicknames, etc. for passwords. Also do not just append or prepend a digit to any of
the above, or change “o” to “0” or “l” to “1”, and so on. These variations are all very
easily deduced by widely-available password cracking programs.

1.4 Getting assistance

• man command – on-line manual pages in full on the particular command.

• whatis command – one-line description of the command.

• man -k keyword – to see a quick reference list of all mentions of the keyword (or
command) in the manual listings.

• apropos keyword – same as man -k keyword.

1.5 Commands (in general)

• Commands are shorthand instructions to tell the system what to do. They are inter-
preted by the shell program. Their format is usually
command argument list
where argument list consists of options and/or filenames.

• Options modify commands, and are usually single letters or combinations of letters
preceded by a dash (eg man -k ls).

2

• Use a semicolon (;) to separate multiple commands on the same line.

• Use a backslash (\) to continue a long command onto the following line.

• Control/c will stop the activity of a command and return control to you.

1.6 Files vs processes

• Files store information:

– Data, text, directories, program code, devices

• Processes do the work:

– Shells, commands, executing programs, daemons (system processes)

2 Directories

2.1 Moving around

• Directories organize collections of files.

• cd or cd ~ puts you into your home directory.

– . refers to whichever directory you are in at that moment.

– cd .. puts you into the directory just above the present one, the parent directory.

– cd directory name puts you into the named directory.

• Pathnames are the full names of files or directories. Each level is signified by a /, e.g.
cd /internet/username/dir1/subdir2 means to change level to directory subdir2.
This is an absolute pathname. If you were already in directory dir1, then cd subdir2,
without a leading /, would be the relative pathname to that directory.

• $PATH is a variable defined in your startup files. It lists the directories, both your
own and system ones, to be searched whenever you ask for a program to be run, e.g.
> echo $PATH

/bin:/usr/bin:/usr/ucb:/usr/openwin/bin:/usr/bin/X11:/local/bin

(echo string writes string to the terminal.)

• pwd tells you which directory you are currently working in (print working directory).

3

2.2 Housekeeping

• mkdir directory name is the command to create a directory.

• rmdir directory name removes the directory. It must not contain any files, otherwise
rmdir will not work.

• rm -r directory name removes a directory and all its files (and other subdirectories)
recursively from within the specified directory, then deletes the directory itself.

• mv dir1 dir2 moves, or renames, dir1 to dir2. If the directory dir2 already exists,
dir1 is moved inside dir2.

2.3 Names

• In Unix, all commands, directory names and file names, are case-sensitive: files Rub-
bish and rubbish are quite different.

• Names may be comprised of letters, numbers, underscore () and dot (.). Do not use
special characters such as $, >, <, and |.

• There are no version numbers in Unix. Make a copy of a file to a different filename
before editing it (for instance) otherwise it will be overwritten by the new version.

• File type extensions such as .exe, .dat, etc. are not used. Some program source files
have extensions such as .f for Fortran code, .c for C code, but these are actually a matter
of convention rather than being necessary for the operating system.

2.4 Directory listings

• ls gives you a listing of all the files in a directory by name.

• ls -F gives you a listing with filetypes indicated by a special character: ‘/’ for a directory,
‘*’ for an executable file, and no character for a data file.

• ls -l gives you a long listing of the directory contents, including permissions, owner,
size, and date created.

• Some other useful options to ls are -a show all (including files that start with ‘.’), and
-t sort in time order (most recently modified).

• The options to ls are different in SunOS4 and SunOS5. -g in SunOS4 shows group
ownership, while in SunOS5 it shows a long listing without the owner column.

• In your .bashrc file some of the options to ls have been aliased to the correct format
for whatever machine you’re working on, so have a look at the different formats and the
aliases you can use.

4

• An example of a directory listing (using ls -lagF) is
-rwxr-xr-- 1 c9399999 cs2 693 Apr 17 11:58 .bashrc

-rwxrwxr-x 1 c9399999 cs2 1024 May 11 10:14 prog1*

drwxr--r-- 2 c9399999 cs2 512 May 6 11:22 texdir/

-rw-rw-r-- 1 c9399999 cs2 9850 May 14 13:24 unix1.tex

The items in the example above, from left to right, are:

– the permissions, which are the first 10 characters. ‘d’ signifies a directory, then
there are three fields of three characters each. The three fields are permissions
for owner, group and world. The three characters in each field are r (read),
w(write), and x (execute). A dash (–) indicates that the permission is turned off.

– The links to files. Here 1 means that the file has one link, to the present directory,
while 2 for the subdirectory means that it links both to its own files as well as the
present directory.

– The owner of the files.

– The group to which the owner belongs. Other members of the owner’s group have
more access permissions than people outside the group, ie. the world. In this case
the computer group has w (write) access to prog1 and unix1.tex, and x (execute)
permission for prog1.

– The size of the file in bytes.

– The date and time the file was created. This refers to the most recent 6 months;
previous times are in the format of date and year.

– The name of the file, and the filetype (/ directory, * executable).

3 Files

3.1 Name completion

If you type part of a filename or a command and press Tab, the shell will complete the name
for you if the part you typed is unique. If it is not unique, the terminal will beep. Another
Tab will show you a list of commands or filenames which would complete the non-unique
entry. Type additional characters until the name is unique, then press Tab again.

3.2 Reading text files

• cat file1 types the entire contents of file1 to the screen.

• more file1 also types file1 but only a screenful at a time (press spacebar for the next
screen).

• less file1 also types file1 a screenful at a time (it has other useful options).

• head file1 types the first 10 lines of file1.

• head -25 file1 types the first 25 lines of file1.

• tail file1 types the last 10 lines of file1.

• tail -34 file1 types the last 34 lines of file1.

5

3.3 Moving and removing

• mv file1 file2 moves or renames file1 to file2. file1 will replace file2 if file2 already
exists.

• cp file1 file2 copies or overwrites file1 to file2.

• rm file1 deletes file1.

• rm -i file1 asks for confirmation before it deletes file1. This is useful when deleting a
number of files, e.g. rm -i file* (see below, Wildcards).

• At this site mv, cp and rm use the -i option by default. You can remove the option by
typing, for instance, \rm or ’rm’, or putting the line unalias rm in your .userrc file.

3.4 Comparing, counting, searching, and sorting

• cmp file1 file2 compares file1 to file2 and states the first line that differs. This may
be used for any file type.

• diff file1 file2 compares file1 to file2 and shows which particular lines differ. It is
only for text files.

• wc file1 counts the lines, words, and characters in a file.

• grep string1 file1 prints every line in file1 that contains string1.

• sort file1 sorts the lines of file1 into alphabetical order.

• touch file1 creates the empty file file1.

3.5 Wildcards

• ? matches any single character.

• * matches any pattern of characters, eg. ls file* would show file1, filerubbish and
file34.

• [list], eg. cat file[123] means type file1, file2, and file3.

• [lower-upper] (inclusive of lower and upper) eg cat file[a-cx-z] means to type filea,
fileb, filec, filex, filey, and filez.

3.6 Finding files

• find is a command to search for and act upon files.

• find . -name ’*.o’ -print means to start from the current directory (.), look for the
pathnames of any files with the extension .o, and print them on the screen.

6

• find /dir1 -name ’rub*’ -exec rm {} \; means to find files starting with the letters
‘rub’ in the directory dir1, -exec means to execute the following command (rm), and
{} means to substitute the pathname here. \ terminates the execute option.

• See the manual pages for more on find.

3.7 Permissions and filetypes

• chmod changes permissions on any files. It is used in two ways:

– the three permissions, rwx are indicated by octal numbers, ie. r is 4, w is 2, and x
is 1, for a total of 7 for all permissions, separately for each field of user (the owner),
group, and other (the world). The format is
chmod permission numbers filename

∗ chmod 777 file1 changes permissions to -rwxrwxrwx

∗ chmod 444 file1 changes permissions to -r--r--r--

∗ chmod 750 file1 changes permissions to -rwxr-x---

– the other way is to use letters and operators for each field. The format is
chmod [who operator permission] filename. Who is u (user), g (group), o
(other), a (all). Operator is + (add), – (remove), = (assign). Permission is r
(read), w (write), x (execute).

∗ chmod a=rwx file1 changes permissions to -rwxrwxrwx

∗ chmod a–wx file1 changes permissions to -r--r--r--

∗ chmod u+x,ug+w file1 changes permissions to -rwxrw----

• umask is set in your .bashrc file. All files you create will have permissions set so that
access is denied according to the umask, e.g. umask 027 means that user (owner) is
not denied access at all, group does not have write permission, and other are denied
all access. umask by itself shows your current setting in octal, and umask -S shows
you the setting in symbols.

4 File Manipulation

4.1 Standard input, output, error, and redirection

• Standard input is what you type into the terminal from the keyboard.

• Standard output is what appears on the terminal as output from commands, pro-
grams, etc. (excluding error messages).

• Standard error is the diagnostic output which also appears on the terminal.

• < is a redirection command. It means to take input from somewhere other than the
keyboard, eg. sort < file1 would get the input for the sort program from file1.

• > also redirects, and means to direct output to somewhere other than the terminal,
eg. sort file1 > file2 would sort file1 and write the output to file2.

7

• &> or >& redirects error messages to a file. Errors normally appear on the terminal
screen, even if the standard output has been redirected to a file.

– To redirect error messages to the same file as the standard output, use
command &> outerrfile.

– To redirect output to one file and diagnostics to a different file, type
command > outfile &> errorfile.

– To throw the error messages away, send them to the ‘bit bucket’, /dev/null, eg.
command > outfile &> /dev/null.

• Redirection applies only to one command group at a time: if you want to do a series
of commands then redirect the output, put the series of commands in parentheses, eg,
(command ; command ; command) > outfile.

• Parentheses define a command environment in which a series of commands may
operate within a subshell, without changing anything in the current environment, eg.
(cd dir1; sort file1 > file2) would return to the current directory after executing the
command without having to cd back to it.

• The command typeset -x noclobber in your .bash profile file prevents overwriting
of a file if you accidently redirect output to a file that already exists.

• Override noclobber by putting | after the redirection command if you really do want
to overwrite a file, eg.
sort file1> | file2
will sort file1 and overwrite any existing contents of file2.

4.2 Append to, read from here

• >> is the append command, eg.
cat file1 >> file2 appends the contents of file1 to file2
date >> datefile creates the file datefile with the system date and time in it.

typeset -x noclobber in your .bashrc file prevents the creation of a file with >>,
so use >> | to override it.

• << creates a here document. This takes multiple lines of keyboard input as standard
input for a particular command. The format is
command << marker
input
....
marker
Where marker may be a single character or a word which does not appear in the text.
This is a quick way to write a small text file, for instance.

4.3 Pipes, filters, and tees

• Pipes (|) direct the standard output of one process into the standard input of another
process, eg. ps | sort | more would sort a list of processes and type them a screenful
at a time.

8

• Filters are sequences of pipes and commands that operate on files, e.g.
ps aux | grep username > file1
would filter all the processes being run by username and write them to a file.

• tee takes standard input and sends a copy to a file (or files) and a copy to the standard
output (usually the screen), eg. ls | tee file1 would put a list of filenames on the screen
and also write the list to file1.

• tee -a appends to an existing file.

4.4 tar and compress

tar (tape archive) saves to and restores files from archive files or tapes. Format is
tar option archive file file(s)
(This is one of the few Unix commands for which the – is unecessary.) Some options are:

• c initialize a new archive

• v verbose, display information during archiving

• r add file to end of files in archive

• f force to use the following archive

• p preserve original modes of extracted file

• t list files in archive

• x extract file from archive

compress and uncompress may be used to reduce file sizes, to free up your disk space.
Examples:

• tar cf dir2.tar dir2 copies the contents of dir2 to a new archive file, dir2.tar.

• tar rf dir2.tar file1 appends file1 to dir2.tar.

• tar tvf dir2.tar shows you the contents of dir2.tar.

• Extract the files with tar xfp dir2.tar.

• To extract file1 only, tar xfp dir2.tar file1.

• compress dir2.tar reduces the file in size (roughly by about half). The output is a
file called dir2.tar.Z. Use zcat to examine the contents of a compressed file.

• uncompress dir2.tar.Z restores dir2.tar.

• gzip and gunzip work the same way as compress and uncompress but they are even
more efficient. The suffix of a file compressed with gzip is .gz.

9

5 What’s Going On

5.1 Time and space

• date gives the system date and time.

• cal [month] year gives a calendar for a specified year and (optional) month. Month
is numerical, 1–12, and year must be in format yyyy.

• du [directory] shows your disk usage in kbytes. du -s gives the total only, and du -a
gives the size of each file.

• df [filesystem] gives the total filesystem usage in kbytes, for a particular filesystem,
or all if no filesystem is specified.

• quota -v shows your disk quota. In order the fields are: filesystem, amount used (in
kilobytes), filesystem quota, maximum excess quota available for a short period, time
left to reduce usage if you are over quota; plus the same fields for inodes. (Every file
on the system has a unique inode (index node). It describes the actual disk layout of
the file data, plus ownership, permissions, access date, size etc.)

5.2 Who am I

• whoami gives your login name.

• finger shows who is logged on, their terminal line, how long their terminal has been
idle when they logged on and from where they logged on.

• w and who show users, terminal lines, time logged on, idle time, the processes being
executed or which machine or terminal servers are being used.

5.3 Process control

• ps shows the process (or job) status, that is, which processes you are currently using,
such as programs, shells, system commands, etc.

• ps -aux (SunOS4) or ps -ef (SunOS5) gives a long, user-orientated list of all processes
occurring on the system.

• psg is a local alias that shows all your current processes, and psgstring shows any
processes with string in the listing.

• & at the end of a command line puts the process in the background, ie. it runs
while you use the terminal for other activities. You may put more than one job in the
background.

• jobs tells you which jobs you have running in the background and their numbers.

• fg brings a job to the foreground. fg %n brings a specified job to the foreground,
where n is the appropriate number from the jobs command. %n may be replaced by
the process number (PID) from the ps command.

10

• ctrl/z temporarily stops a foreground job from executing so that you may do something
else from the terminal.

• fg or fg %n restarts stopped job n in the foreground.

• bg or bg %n restarts stopped job n in the background.

• kill %n terminates a specified job, kill % terminates the current job.

• If you have stopped jobs in the background then you will get a message to this effect
when you try to logout. You can then deal with the job, or logout again, and the job
will be terminated.

• If the job has been put in the background with & at the end of the command it will
continue to execute after you have logged out.

5.4 History (a sense of deja vu)

• The history facility is one of the major attractions of the bash shell. It keeps a list of
all the commands you have typed in a session, usually up to 1000 commands.

– Type history to see the list of previous commands.

– Repeat the most recent command with !!

– Repeat command 25 (for example) with !25

– Repeat a command beginning with man (for example) with !man

– You are not allowed to edit or delete your .bash history file.

To re-use and edit previous commands (under bash) press Esc –. Then use – and +
to move backwards and forwards respectively through the commands. They can be changed
with vi editing commands. Control/C lets you escape this mode. You will need the setup
file .inputrc in your top directory for this to work (it is installed in all new accounts).

5.5 Aliases

• alias allows you to abbreviate commands or substitute your own terms for commands.
Format is alias substitute=command. Note there are no spaces either side of “=”.

• An essential alias to have is alias rm=’rm -i’ which means to enquire if deletion is
really desired before acting. Note the single quotes which force rm -i to be treated as
a unit, a compound command.

• To disable an alias temporarily, for instance to delete without checking first, type \rm
files, or ’rm’ files at the keyboard so that the -i is excluded.

• To remove the aliased option altogether, put the line unalias rm in your .userrc file.

• Aliases are usually defined in the .bashrc file. Some system aliases may be already set
up for you. Type alias with no arguments to see which aliases you may have.

11

5.6 Special characters

• Quoting (or escaping) is the way to use special characters or variable names with
their literal or ordinary meaning.

• \ is used to escape a single character, eg. at the end of a line it escapes the newline
character, so it acts as a command continuation.

• The following characters have special meaning to the shell (they are metacharacters)
and need to be escaped to be used literally in a command, eg echo * prints * to the
screen, while echo * shows the list of filenames in the directory.

– *[]?{}~- filename expansion

– ><&! redirection

– \’" quoting

– !^ history

– $ variable identifier

– () command group

– ‘ command substitution

– ; command delimiter

– & background jobs

– | pipes

– return newline

– space, tab argument separator

• Different type of quotation mark vary in their activity:

– single quotes (’) quote all characters literally.

– double quotes (”) quote most characters literally, but expand shell variables.

– backwards single quotes (‘) expand command substitution variables (i.e. show the
output of the quoted command), e.g.

> typeset d=date

> echo $d

date

> echo ’$d’

$d

> echo "$d"

date

> echo ‘$d‘

Mon Feb 26 09:59:23 EST 1996

12

6 Variables and Commands

6.1 Builtins

Not all of the commands that you issue are Unix commands. Some are actually built into
the shell itself, and they are usually the more efficient to use. For instance when you run the
Unix command pwd the parent shell has to create a subshell to run the program /bin/pwd.
There is a shell builtin called dirs (directory stack) which gives the same information (your
home directory is indicated by ~) but which is faster and easier for the system to implement
than pwd.

You have already been introduced to many of the shell builtins, with commands such as:
alias, bg, cd, dirs, exit, fg, history, jobs, kill, login, logout, set, umask.

Another useful one is source, which is used to run shell scripts or special files such as
.bashrc and .bash profile in the current environment, without starting up a new subshell.
For example, if you had changed your .userrc file and wanted the new version to apply to
the present session, type source .userrc.

6.2 Variables

Your computing environment is organized and maintained by means of defined variables.
Some are predefined when you first log on, getting information from system files. Some you
define for yourself. These variables are further classified as either environment variables or
shell variables. man bash describes all of the variable options in great detail.

Environment variables are maintained by Unix rather than the shell. They store information
about your user environment, your login directory, your username, your shell, and your
terminal type, plus there are other optional definitions. These variables are available within
the shell and are also exported to programs you run from the shell, such as editors, mail, and
shell scripts.

Environment variables are usually defined in your .bash profile and .user profile files, with
the commands typeset and declare, for example:
typeset -x noclobber, or
declare -x EDITOR=vi
The -x exports the definition to subsequently opened shells, or you may explicitly type
export EDITOR. The command printenv shows a list of your environment variables.

Shell variables are maintained by the shell, and are available only within the shell, or within
any new shells that you may open. They are used to define your path, your umask, your
ulimits (resource usage limits), and any aliases you may wish to set up. Shell variables are
usually defined in your .bashrc and .userrc files. Use typeset rather than declare in these
files. The command set shows a list of your currently-defined shell variables.

Note: on this system, .bash profile and .bashrc are not changeable by users, they are the
same for everyone. However, you are able to edit your .user profile and .userrc files.

13

6.3 Customizing your own variables

Shell variables aren’t always system ones, you can create your own. Define them with the
typeset command in the format
typeset -x variable=string

If you type this at the terminal the definition will exist only for that login session. If you
want the definition to be always available, put it in your .userrc file. However if you have
lots of these definitions you may slow yourself down as the .userrc file is run every time a
shell script is executed. If they aren’t going to be used in any scripts, it may be better in
this case to put them in your .user profile file instead, as it is only run once.

When actually using shell variables you invoke their meaning by putting $ in front of them,
e.g., echo $variable would return string.

6.4 Command substitution

Command substitution replaces the command itself with the command output, using shell
variables and the backwards single quote (grave accent) character (‘) e.g.,
typeset d=‘date‘
assigns the current date and time to variable d. Use command substitution by putting $ in
front of the variable (as in variable expansion), e.g., echo $d types the actual date and time
to the screen.

Command substitutions may also be embedded in strings e.g.,
echo ”there are ‘who | wc -l‘ users logged on”
would return
there are 6 users logged on

6.5 Process creation

A process consists of

• a unique systemwide identification number (PID)

• a current directory and a table of open files

• a program area with executable instructions

• data areas with variable and environment definitions

• the operating system structures required by Unix

• and a life cycle: it is created by a program, it lives while it works, and it dies when the
work is completed.

When the parent process begins to execute a command, it first calls a fork. The fork is a
Unix system routine which duplicates all the process characteristics of the parent, creating
the child process (identical to its parent apart from having a different PID).

The parent process calls a wait routine, which suspends the parent’s activity, while the child
process operates within a subshell created by the parent. The child process calls a Unix
routine (exec) to actually execute the command program.

14

exec overlays the child process with the command program instructions and data, but the
child environment is not altered (the overlaid program for a shell script is /bin/bash). The
child process finishes executing, calls the exit routine, dies, then the parent process wakes
up, to display again the prompt for interactive commands.

6.6 Command execution

There are three levels of command activity. Each is successively more demanding of system
resources:

• If the command is one of the shell’s own builtins it runs it directly inside the parent
shell. This is the most efficient type of command procedure.

• If the command is a Unix command or your own executable, a subshell is created by
the parent process for a child process to run the program.

• If the command is a shell script, the child process calls /bin/bash, which creates a new
shell to replace the child process, in which it re-runs .bashrc (but not .bash profile).

6.7 Efficiency miscellany

• Use builtins rather than Unix commands if possible to avoid excessive creation of pro-
cesses and subshells.

• Use single Unix commands that operate on lines of text, like grep and sort rather than
shell scripts to avoid the overhead of a new shell and a re-run of .bashrc.

• Use shell scripts rather than C programs for sequences of Unix commands. No compile,
link, load, or object files to maintain.

• Use C programs rather than shell scripts for numeric or character data because for these
C is the more efficient.

• If you don’t need your aliases etc. you can run a shell script without running .bashrc
by typing bash -norc <filename>, for a fast startup.

• In general, always cd to a directory before operating on files in it, because full pathname
commands are less efficient than local commands.

15

