
Page 1

Snapshot Stats

Kate Lance
clance@connect.com.au

The amount of information that a sysadmin must personally filter is immense, and falls into many
different system areas such as user activity, security, emergencies, resources, and performance. There
are many fine utilities available to sound the alarm when resources collapse, emergencies errupt, or
security is attacked.

But how do you get a feel for the everyday performance of your machines, and how do you find out
when their resources are gradually drifting away from optimal levels to the point at which you need to
re-provision them? Performance indicators such as free memory, available CPU, process load, or disk
activity may take months before functional levels degrade to potential bottlenecks, and the baseline
changes may be so gradual that they're lost in the noise of often enormous daily fluctuations.

The everyday performance tools like vmstat or ping give instantaneous pictures of the state of a machine
or network, but they demand constant monitoring to perceive changes -- and how do you tell if they're
significant changes or just acceptable normal fluctuations?

Fig. 1: Percentage of idle CPU measured at 10-second intervals over one day on a busy News server.

You could collect the data continuously for later inspection, but this would not only impact on
performance, but such a vast stream of data would be very difficult to summarise, understand, compare,
or preserve for future investigation.

The fairly obvious answer is to take samples of the data, not to try to collect it continually. If samples
are appropriately spaced then they provide a snapshot of the conditions of machines or networks. But
this raises two questions:

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

%
 I

d
le

 C
P

U

10-second interval counts over one day

Page 2

• what are the appropriate sample intervals for targets with such enormously variability?

• and once you have identified a useful snapshot interval how do you comprehend the data on a
regular basis to know when a significant change has occurred?

Appropriate Sample Intervals

To define appropriate sample intervals, the utility vmstat was run every 10 seconds for one full day on
a very active News server, with great variability in short and long time-scales throughout the day:

 procs memory page disk faults cpu

 r b w swap free re mf pi po fr de sr s0 s1 s2 s3 in sy cs us sy id

 0 0 0 430784 4216 0 90 14 0 0 0 0 1 2 1 8 314 1662 292 9 16 75

 0 0 0 431212 3832 2 202 17 12 56 360 20 0 2 0 21 326 1645 299 11 23 66

 1 0 0 428580 3188 14 326 28 91 434 732 160 1 7 3 39 438 1852 338 22 33 45

 0 0 0 430180 4816 1 230 59 8 8 0 0 2 4 2 24 403 2207 342 16 25 59

 0 0 0 429540 3400 3 135 22 13 13 0 0 1 3 3 14 318 1732 279 9 20 71

 1 1 0 429716 3544 21 260 14 88 88 0 0 1 6 6 61 498 1968 348 17 32 52

 1 1 0 429408 3676 24 263 28 121 121 0 0 0 5 2 69 511 2389 398 29 35 36

 0 0 0 430332 4088 1 77 18 0 0 0 0 0 3 1 45 392 27871 286 21 60 19

 0 0 0 430884 5424 0 64 17 0 0 0 0 0 1 1 5 291 1697 284 5 14 81

The mean of each of the measurements from a full day's data was calculated and compared to the mean
derived from samples taken at one-minute, 5-minute, 10, 15, 20, 30 60 and 120-minute intervals:

Number of samples Sample interval
over one day (minutes)
8640 1/6

1440 1

 288 5

 144 10

 96 15

 72 20

 48 30

 24 60

 12 120

Fig. 2: Mean number of processes in run queue and blocked for resources for each of the sample
intervals (procs, r b).

0

0.2

0.4

0.6

0.8

1

1/6 1 5 10 15 20 30 60 120

N
u
m

b
er

 o
f

p
ro

ce
ss

es

Sample intervals (minutes)

processes in run queue

blocked for resources

Page 3

Fig. 3: Mean kbytes free memory for each of the sample intervals (memory, free).

Fig. 4: Mean kb paged in, out and pages scanned for each of the sample intervals (pi, po, sr).

Fig. 5: Mean number of disk operations per second for 4 disks for each of the sample intervals
(disk, s0 s1 s2 s3).

2000

2500

3000

3500

4000

4500

5000

1/6 1 5 10 15 20 30 60 120

k
b
 f

re
e

m
em

o
ry

Sample intervals (minutes)

0

50

100

150

1/6 1 5 10 15 20 30 60 120

N
u
m

b
er

 p
er

 s
ec

o
n
d

Sample intervals (minutes)

kb paged out

kb paged in

pages scanned

0

10

20

30

40

1/6 1 5 10 15 20 30 60 120

 D
is

k
 o

p
er

at
io

n
s/

se
c

Sample intervals (minutes)

Page 4

Fig. 6: Mean interrupts per second for each of the sample intervals (faults, in sy cs).

Fig. 7: Mean percentage of Idle, System and User CPU for each of the sample intervals (cpu, us sy id).

• The surprising result is that samples taken as infrequently as once per hour or once every two
hours give mean results that are almost as accurate as those taken once every 10 seconds.

• 10, 15, 20, and 30 minute intervals show large differences from 10-second interval data -- perhaps
cron activity at those intervals is affecting the means.

Recognising Significant Changes

Our procedure:

• Collect data (hourly at our site), save to files with a datestamp, one flat file per machine -- can plot
daily fluctuations easily (gnuplot). Files rolled over monthly.

• At midnight a simple shell script takes means of the previous 24 hours of data, emails system staff
a list of machines and their mean results for the most informative of the above measures:

0

500

1000

1500

2000

2500

1/6 1 5 10 15 20 30 60 120

In
te

rr
u
p
ts

/s
ec

Sample intervals (minutes)

Device interrupts

System calls

Context switches

0

20

40

60

80

100

1/6 1 5 10 15 20 30 60 120

P
er

ce
n
ta

g
e

Sample intervals (minutes)

Idle CPU

System CPU

User CPU

Page 5

 Processes in run queue
 Blocked processes
 Page scan rate
 System call interrupts
 Idle CPU

Comparison between machines:

Machine Load Block Scan Inter freeCPU

perki 0.1 0.3 74 1681 71.3 (News servers)

merki 0.4 0.2 50 1297 56.3

gnamma 1.4 1.5 32 278 31.2

yeppa 1.6 1.2 51 382 32.9

auwa 0.4 1.0 75 233 63.0

pinah 0.2 0.3 18 159 74.1

myangup 0.3 0.9 11 10447 40.2 (Web caches)

myeah 0.3 0.7 7 11810 35.8

myponga 0.1 0.6 10 11064 42.7

bunora 0.0 0.1 3 1096 71.4 (VWS servers)

buntor 0.0 0.1 0 477 93.3

bunyip 0.3 0.1 0 587 71.2

• News servers: high loads, blocked resources (usually disk I/O), high scan rates (need memory),
low interrupt rates, two are low on available CPU.

• Web caches: occasional load, some disk I/O blockage, memory starting to run low, very high
interrupt rates (but machines are Ultra 2’s, can handle it), but CPU resources low.

• VWS servers: low load, little disk I/O, good memory resources, low interrupt rate, lot of CPU
available.

Comparison between daily results for each machine:

• We save the daily mean results to a flat file for each machine, for easy scanning by eye or plotting.

Before and after memory, CPU upgrade, disk reorganisation:

UnivTime Load Block Scan Inter freeCPU

Sun Mar 9 00:00:06 EST 1997

857908681 0.0 1.4 63 5788 71.8

857995081 0.0 1.5 56 6045 68.5

858081481 0.1 2.3 77 12620 56.4

858167880 0.2 2.0 81 26265 41.4

858254281 0.1 1.7 61 25959 43.0

858340682 0.1 3.4 99 22532 42.6

858427081 0.1 3.0 71 26184 42.7

Sun Mar 16 00:00:06 EST 1997

858513481 0.0 2.0 76 31239 41.5

858599881 0.1 3.5 87 10642 60.8

858686280 0.1 2.2 94 7264 61.4 *****

858772681 0.1 1.4 103 1728 69.3

858859082 0.0 0.8 75 1622 72.4

858945480 0.0 0.3 74 1951 65.7

859031881 0.0 0.6 53 1124 76.6

Page 6

Runaway process that consumed all CPU:

863359081 0.0 0.0 1 292 93.7

863445482 0.0 0.0 0 15090 41.2

863531881 0.0 0.1 0 26897 0.0 *****

863618281 0.0 0.0 3 12522 52.3

863704682 0.0 0.0 1 560 92.9

863791082 0.0 0.0 0 395 93.3

• The actual figures are much less important than changes in the figures.

• Can't exclude human involvement! You must know your machine to start with, know what sort of
services it's providing and what are normal, acceptable performance indicators for that machine --
will vary according to CPU type, amount of memory, disk layout, services performed.

• Over time, once a pattern of activity is established, you could set threshold values, get email when
they are exceeded, etc. -- but I prefer, just once a day, to scan a familiar list and see for myself any
differences.

• When funds becomes available for upgrades or extra memory, it is obvious from daily patterns
like this which boxes really need the resources.

• The tiny flat files are easy to store, easy to scan by eye, easy to plot for long-term trends, easy to
refer to in the future if some other aspect of the information becomes interesting.

We use snapshot stats techniques with:
• vmstat for monitoring machine performance and general health (as above)
• ping for core network machine response
• ping for checking congestion and response times on international links to popular sites
• ping for path-specific checks on our international bandwidth providers
• url_get for measuring response of overseas and internal web sites from our Sydney and

Melbourne hubs

